• Title/Summary/Keyword: Numerical calculation

Search Result 2,383, Processing Time 0.029 seconds

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

A Numerical Analysis on Flow Fields and Calculation of Pressure Resistance about an Air Supported Ship (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.43-48
    • /
    • 1995
  • A numerical computation is carried out to analyse characteristics of flow fields around Air Supported Ships having arbitrary form. The computations are performed in a rectangular grid system with MAC(Marker And Cell) method. The governing equations are represented in a Finite Difference form by forward differencing in time and centered differencing in space except for convection terms. For validation of this numerical analysis method, the computation of flow fields around Catamaran and ACV(Air Cushion Vehicle) with pressure distribution on free surface are done, and that around Surface Effect Ship is also carried out. The results of the computations are compared with the those of existed numerical computation and experimental results with the same condition.

  • PDF

Numerical Simulation of Two-Dimensional Impinging Slot Jet (정상상태의 이차원 슬롯 충돌제트에 관한 수치 해석)

  • Park, Tae-Hyun;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.603-608
    • /
    • 2000
  • The characteristics of laminar and turbulent slot impinging jet flows are examined using segregated FEM with SUPG. Turbulent flows are modeled using $Wilcox^{(1)}$ $k-\;{\omega}$ turbulence model. The results are validated by comparing with velocity field of the existing experimental data. The distance of the target plate from the nozzle varies between 2, 4 and 5 times the slot jet width. Present study shows that the $k-\;{\omega}$ model gives results which agree well with the existing experimental data. In turbulence flows, the velocity profile of present calculation is more accurate than the existing numerical calculations. In laminar flows, We found tertiary vortex which was not found in the previous numerical study by M. $chen^{(6)}$ et al due to the numerical difference.

  • PDF

A Numerical Simulation of the Shoreline Change and Sediment Transport with Shore Structures at Songdo Beach Youngil Bay, Korea (한국 영일만 송도 해수욕장의 해안선변화 및 표사이동율에 관한 수직 시뮬레이션)

  • 이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.1
    • /
    • pp.77-106
    • /
    • 1989
  • Two numerical models of the shoreline change and sediment transport rates, explicit and implicit, are simulated with shore structures such as breakwaters, a jetty, groins and a seawall. The applied study area is songdo Beach, Youngil bay, Korea since it has all the shore structures mentinoed above. The two models investigate the beach line changes and sedimen transport rates for the beach before design of three groins with and without an offshore breakwater. In order to estimate the shoreline changes after three groins were built, the beach response inside the three groin compartiments and the offshore barrier are also investigated. The simulation based on the initial shoreline conditions surveyed by the Hydrographic office, Koreai 1979 and 1984. The breaking wave characteristics are introduced into the models by calculation from the empirical equations and modification from the numerical and hydraulic model test results developed for waves behind an offshore breakwater. The numerical simulation describes well the tendencies of the sand transport and shoreline changes affected by wave diffraction behind a detached breakwater and by interruption of sand transport at three groins.

  • PDF

Static aerodynamic force coefficients for an arch bridge girder with two cross sections

  • Guo, Jian;Zhu, Minjun
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.209-216
    • /
    • 2020
  • Aiming at the wind-resistant design of a sea-crossing arch bridge, the static aerodynamic coefficients of its girder (composed of stretches of π-shaped cross-section and box cross-section) were studied by using computational fluid dynamics (CFD) numerical simulation and wind tunnel test. Based on the comparison between numerical simulation, wind tunnel test and specification recommendation, a combined calculation method for the horizontal force coefficient of intermediate and small span bridges is proposed. The results show that the two-dimensional CFD numerical simulations of the individual cross sections are sufficient to meet the accuracy requirements of engineering practice.

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method (유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석)

  • Won, Sung-Yean;Lee, Hyang-Beom;Shin, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

Numerical Study of Heat Transfer Associated with Droplet Impact (액적 충돌에 동반된 열전달에 관한 수치적 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1897-1902
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the mass, momentum and energy equations for the liquid-gas region. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation during the whole calculation procedure and to include the effect of contact angle at the wall. The numerical method is validated through test calculations for the cases reported in the literature. Based on the numerical results, the effects of advancing/receding contact angle, impact velocity and droplet size on the heat transfer during droplet impact are quantified.

  • PDF

Development of Code for Numerical Analysis of Interior Ballistics using Eulerian-Lagrangian Approach and SMART scheme (Eulerian-Lagrangian 접근법과 SMART scheme을 이용한 강내탄도 전산해석 코드 개발)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong;Jang, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.349-357
    • /
    • 2010
  • In this paper, a numerical code for the interior ballistics has been investigated. The Eulerian-Lagrangian approach and the SMART scheme have been used in the numerical code for the grain combustion. The translational kinetic energy of the projectile and work done against barrel friction have been considered only. The ghost cell extrapolation method has been used for the chamber change with the projectile movement. The calculation results of the numerical code have been compared and verified through those of IBHVG2 code.

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF