• 제목/요약/키워드: Numerical algorithms

검색결과 915건 처리시간 0.022초

Distributed Power and Rate Control for Cognitive Radio Networks

  • Wang, Wei;Wang, Wenbo;Zhu, Yajun;Peng, Tao
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.166-174
    • /
    • 2009
  • In this paper, a distributed power and end-to-end rate control algorithm is proposed in the presence of licensed users. By Lagrangian duality theory, the optimal power and rate control solution is given for the unlicensed users while satisfying the interference temperature limits to licensed users. It is obtained that transmitting with either 0 or the maximum node power is the optimal scheme. The synchronous and asynchronous distributed algorithms are proposed to be implemented at the nodes and links. The convergence of the proposed algorithms are proved. Finally, further discussion on the utility-based fairness is provided for the proposed algorithms. Numerical results show that the proposed algorithm can limit the interference to licensed user under a predefined threshold.

ON THE LINEARIZATION OF DEFECT-CORRECTION METHOD FOR THE STEADY NAVIER-STOKES EQUATIONS

  • Shang, Yueqiang;Kim, Do Wan;Jo, Tae-Chang
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1129-1163
    • /
    • 2013
  • Based on finite element discretization, two linearization approaches to the defect-correction method for the steady incompressible Navier-Stokes equations are discussed and investigated. By applying $m$ times of Newton and Picard iterations to solve an artificial viscosity stabilized nonlinear Navier-Stokes problem, respectively, and then correcting the solution by solving a linear problem, two linearized defect-correction algorithms are proposed and analyzed. Error estimates with respect to the mesh size $h$, the kinematic viscosity ${\nu}$, the stability factor ${\alpha}$ and the number of nonlinear iterations $m$ for the discrete solution are derived for the linearized one-step defect-correction algorithms. Efficient stopping criteria for the nonlinear iterations are derived. The influence of the linearizations on the accuracy of the approximate solutions are also investigated. Finally, numerical experiments on a problem with known analytical solution, the lid-driven cavity flow, and the flow over a backward-facing step are performed to verify the theoretical results and demonstrate the effectiveness of the proposed defect-correction algorithms.

Resource Allocation Scheme for Millimeter Wave-Based WPANs Using Directional Antennas

  • Kim, Meejoung;Kim, Yongsun;Lee, Wooyong
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.385-395
    • /
    • 2014
  • In this paper, we consider a resource allocation scheme for millimeter wave-based wireless personal area networks using directional antennas. This scheme involves scheduling the reservation period of medium access control for IEEE 802.15.3c. Objective functions are considered to minimize the average delay and maximize throughput; and two scheduling algorithms-namely, MInMax concurrent transmission and MAxMin concurrent transmission-are proposed to provide a suboptimal solution to each objective function. These are based on an exclusive region and two decision rules that determine the length of reservation times and the transmission order of groups. Each group consists of flows that are concurrently transmittable via spatial reuse. The algorithms appropriately apply two decision rules according to their objectives. A real video trace is used for the numerical results, which show that the proposed algorithms satisfy their objectives. They outperform other schemes on a range of measures, showing the effect of using a directional antenna. The proposed scheme efficiently supports variable bit rate traffic during the reservation period, reducing resource waste.

다목적함수 최적화를 위한 새로운 진화적 방법 연구 (A Study of New Evolutionary Approach for Multiobjective Optimization)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

The study of frictional damper with various control algorithms

  • Mirtaheri, Masoud;Samani, Hamid Rahmani;Zandi, Amir Peyman
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.479-487
    • /
    • 2017
  • Frictional dampers are used in structural engineering as means of passive control. Meanwhile, frictional damper shave a disadvantage compared to viscous rivals since the slippage force must be exceeded to activate the device, and cannot be ideal full range of possible events. The concept of semi-active control is utilized to overcome this shortcoming. In this paper, a new semi-active frictional damper called Smart Adjustable Frictional (SAF) damper is introduced. SAF damper consists of hydraulic, electronic units and sensors which are all linked with an active control discipline. SAF acts as a smart damper which can adapt its slippage threshold during a dynamic excitation by measuring and controlling the structural response. The novelty of this damper is, while it controls the response of the structure in real time with acceptable time delay. The paper also reports on the results of a series of experiments which have been performed on SAF dampers to obtain their prescribed hysteretic behavior for various control algorithms. The results show that SAF can produce the desired slippage load of various algorithms in real time. Numerical models incorporating control simulations are also made to obtain the hysteretic response of the system which agrees closely with test results.

사용자 의도에 의한 삼차원 삼각형 메쉬의 기하적 특징 추출 (User-Steered Extraction of Geometric Features for 3D Triangular Meshes)

  • 유관희;하종성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제9권2호
    • /
    • pp.11-18
    • /
    • 2003
  • 본 논문은 2차원 영상에서 커서를 특징 경계로 이동시키는 스내핑(snapping)과 특징 경계를 추출하는 래핑(wrapping)을 3차원 메쉬로 확장하여 메쉬상의 기하적 특징을 사용자가 의도한 대로 추출할 수 있는 기법을 다룬다. 먼저 메쉬상의 나타나는 기하적 특징을 계량화하기 위해 근사 곡률과 움직임 비용함수를 정의한다. 이들 수치 값을 기반으로 기하적 스내핑과 기하적 래핑 알고리즘을 설계한다. 본 논문에서는 제안한 알고리즘을 얼굴 메쉬와 치아 메쉬상에 나타나는 기하적 특징을 추출하기 위해 적용하였다.

  • PDF

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

Delay Tolerant Information Dissemination via Coded Cooperative Data Exchange

  • Tajbakhsh, Shahriar Etemadi;Sadeghi, Parastoo
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.133-144
    • /
    • 2015
  • In this paper, we introduce a system and a set of algorithms for disseminating popular content to a large group of wireless clients spread over a wide area. This area is partitioned into multiple cells and there is a base station in each cell which is able to broadcast to the clients within its radio coverage. Dissemination of information in the proposed system is hybrid in nature: Each base station broadcasts a fraction of information in the form of random linear combinations of data blocks. Then the clients cooperate by exchanging packets to obtain their desired messages while they are moving arbitrarily over the area. In this paper, fundamental trade-offs between the average information delivery completion time at the clients and different parameters of the system such as bandwidth usage by the base stations, average energy consumption by the clients and the popularity of the spread information are studied. Moreover different heuristic algorithms are proposed to control and maintain a balance over these trade-offs. Also, the more complicated case of multiple sessions where each client is interested in an arbitrary subset of sessions is considered and two variants of the basic dissemination algorithm are proposed. The performance of all the proposed algorithms is evaluated via extensive numerical experiments.

CNC 공작기계의 3차원 직선 및 원호 보간 알고리즘에 관한 연구 (3D Linear and Circular Interpolation Algorithm for CNC Machines)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.172-178
    • /
    • 1999
  • 3D linear and circular interpolations are a basic part for the machining of complex shapes. Until now, because of the absence of appropriate algorithms for the generation of 3D lines and circles, a full accomplishment for available machine tool resolution is difficult. this paper presents new algorithms for 3D linear and circular interpolation in the reference pulse technique. In 3D space, the line or circle is not expressed as an implicit function, it is only defined as the intersection of two surfaces. A 3D line is defined as the intersection of two planes, and a 3D circle is defined as the intersection of a plane and the surface of a sphere. Based on these concepts, interpolation algorithms are designed to follow intersection curves in 3D space, and a real-time 3D linear and circular interpolator was developed in software using a PC. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that it can be applied to the next generation computerized numerical control systems for the machining of 3D lines, circles and some other complex shapes.

  • PDF

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.