• Title/Summary/Keyword: Numerical Weather Prediction Model

Search Result 165, Processing Time 0.031 seconds

Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea

  • Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-66
    • /
    • 2020
  • This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System (공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구)

  • Noh, Kyoungjo;Kim, Hyun Mee;Kim, Dae-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution (고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Kim, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data (SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증)

  • Lee, Eun-Hee;Choi, In-Jin;Kim, Ki-Byung;Kang, Jeon-Ho;Lee, Juwon;Lee, Eunjeong;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

Typhoon Simulation with GME Model (GME 모델을 이용한 태풍 모의)

  • Oh, Jai-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.9-13
    • /
    • 2007
  • Typhoon simulation based on dynamical forecasting results is demonstrated by utilizing geodesic model GME (operational global numerical weather prediction model of German Weather Service). It is based on uniform icosahedral-hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral technique as well as the pole problem in latitude-longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. In this study we made an attempt to simulate typhoon 'NARI' that passed over the Korean Peninsula in 2007. GME has attributes of numerical weather prediction model and its high resolution can provide details on fine scale. High resolution of GME can play key role in the study of severe weather phenomenon such as typhoons. Simulation of future typhoon that is assumed to occur under the global warming situation shows that the life time of that typhoon will last for a longer time and the intensity will be extremely stronger.

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data (토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구)

  • Hae-Dong Kim;Ha-Young Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

Study on the Impact of Various Observations Data Assimilation on the Meteorological Predictions over Eastern Part of the Korean Peninsula (관측자료별 자료동화 성능이 한반도 동부 지역 기상 예보에 미치는 영향 분석 연구)

  • Kim, Ji-Seon;Lee, Soon-Hwan;Sohn, Keon-Tae
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1141-1154
    • /
    • 2018
  • Numerical experiments were carried out to investigate the effect of data assimilation of observational data on weather and PM (particulate matter) prediction. Observational data applied to numerical experiment are aircraft observation, satellite observation, upper level observation, and AWS (automatic weather system) data. In the case of grid nudging, the prediction performance of the meteorological field is largely improved compared with the case without data assimilations because the overall pressure distribution can be changed. So grid nudging effect can be significant when synoptic weather pattern strongly affects Korean Peninsula. Predictability of meteorological factors can be expected to improve through a number of observational data assimilation, but data assimilation by single data often occurred to be less predictive than without data assimilation. Variation of air pressure due to observation nudging with high prediction efficiency can improve prediction accuracy of whole model domain. However, in areas with complex terrain such as the eastern part of the Korean peninsula, the improvement due to grid nudging were only limited. In such cases, it would be more effective to aggregate assimilated data.

The Analysis of the characteristics of Korean peninsula Aircraft Icing Index using KWRF (KWRF를 활용한 한반도 착빙 지수 특성 분석)

  • Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.42-54
    • /
    • 2010
  • The purpose of this study is to analyze the aircraft icing index of Korean peninsula using the numerical weather prediction model, KWRF and pilot weather report data. As comparing the pilot weather report data with the calculated icing index using the KWRF model result, SCLW, RAP, and AFGWC index are more useful than any other index, and IC2, NAWAU, and RSID index are different case by case. But IC1, SID1 and SID2 index show that these overestimated severe icing in every vertical level. Through this icing study, it is expected that this study will help to develop the proper icing index of Korean peninsula.