• Title/Summary/Keyword: Numerical Waveform

Search Result 108, Processing Time 0.031 seconds

Effects of Waveform Distribution of Tsunami-Like Solitary Wave on Run-up on Impermeable Slope (고립파(지진해일)의 파형분포가 불투과 경사면의 처오름에 미치는 영향)

  • Lee, Woo-Dong;Kim, Jung-Ouk;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • For decades, solitary waves have commonly been used to simulate tsunami conditions in numerical studies. However, the main component of a tsunami waveform acts at completely different spatial and temporal distributions than a solitary waveform. Thus, this study applied a 2-D numerical wave tank that included a non-reflected tsunami generation system based on Navier-Stokes equations (LES-WASS-2D) to directly simulate the run-up of a tsunami-like solitary wave on a slope. First, the waveform and velocity due to the virtual depth factor were applied to the numerical wave tank to generate a tsunami, which made it possible to generate the wide waveform of a tsunami, which was not reproduced with the existing solitary wave approximation theory. Then, to validate the applied numerical model, the validity and effectiveness of the numerical wave tank were verified by comparing the results with the results of a laboratory experiment on a tsunami run-up on a smooth impermeable 1:19.85 slope. Using the numerical results, the run-up characteristics due to a tsunami-like solitary wave on an impermeable slope were also discussed in relation to the volume ratio. The maximum run-up heights increased with the ratio of the tsunami waveform. Therefore, the tsunami run-up is highly likely to be underestimated compared to a real tsunami if the solitary wave of the approximation theory is applied in a tsunami simulation in a coastal region.

Deep Learning Model on Gravitational Waves of Merger and Ringdown in Coalescence of Binary Black Holes

  • Lee, Joongoo;Cho, Gihyuk;Kim, Kyungmin;Oh, Sang Hoon;Oh, John J.;Son, Edwin J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2019
  • We propose a deep learning model that can generate a waveform of coalescing binary black holes in merging and ring-down phases in less than one second with a graphics processing unit (GPU) as an approximant of gravitational waveforms. Up to date, numerical relativity has been accepted as the most adequate tool for the accurate prediction of merger phase of waveform, but it is known that it typically requires huge amount of computational costs. We present our method can generate the waveform with ~98% matching to that of the status-of-the-art waveform approximant, effective-one-body model calibrated to numerical relativity simulation and the time for the generation of ~1500 waveforms takes O(1) seconds. The validity of our model is also tested through the recovery of signal-to-noise ratio and the recovery of waveform parameters by injecting the generated waveforms into a public open noise data produced by LIGO. Our model is readily extendable to incorporate additional physics such as higher harmonics modes of the ring-down phase and eccentric encounters, since it only requires sufficient number of training data from numerical relativity simulations.

  • PDF

BER and Throughput Analyses of the Analytical Optimum Chip Waveform (해석적 최적 칩파형의 BER과 전송성능(Throughput) 분석)

  • Ryu, Heung-Gyoon;Chung, Ki-Ho;Lee, Dong-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.641-648
    • /
    • 2002
  • The study on the chip waveform design to minimize multiple-access interference (MAI) and its performance evaluation are very important since chip waveform decides the signal quality and system capacity of the direct-sequence CDMA wireless communication system. This paper suggests the analytical chip waveform to minimize the MAI. The BER and throughput performances achieved by the proposed analytical optimum chip waveform are compared with those of the conventional chip waveforms in the Nakagami-m distribution frequency selective channel when the differential phase shift keying (DPSK) is employed in DS-CDMA system. From the numerical results, capacity and throughput are improved about 2 times and 1.4 times respectively when it is compared with the Kaiser chip waveform that is considered as one of the best in the conventional ones.

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

Study on the Chirped Waveform of the USPR Pulse using the Impulse Response of a Waveguide

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2010
  • In ultrashort-pulse reflectometry (USPR), a chirped waveform transformed from the USPR source impulse signal via waveguide makes it possible to employ millimeter-wave mixers for the frequency up-conversion process. Consequently, the frequency bandwidth of the USPR system is sufficiently wide to cover a large portion of the electron density profile of the plasma. Some physical aspects of the chirped waveform, such as maximum amplitude and length, are critical factors to determine the performance of the system. In this paper, the propagation of the USPR impulse signal through a rectangular waveguide is numerically studied to derive the chirped waveform using the impulse response of the waveguide. The results of numerical computation show that the chirped waveform significantly depends on the waveguide cutoff frequency as well as the waveguide length.

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

The Discharge Characteristic Analysis of a Ramp Reset Waveform Using a 2-Dimensional Numerical Simulation in AC PDP (AC PDP에서 2차원 수치해석을 이용한 Ramp Reset 구동파형에 따른 방전 특성 분석)

  • Park Suk-Jae;Choi Hoon-Young;Seo Jeong-Hyun;Lee Seok-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.606-615
    • /
    • 2004
  • The discharge characteristics of a ramp reset waveform in the alternating current plasma display panel(ac PDP) were studied using a 2-dimensional numerical simulation. We analyzed the wall charge variation during the reset discharge, address discharge and sustain discharge adopting a ramp reset waveform. Then we investigated the principal parameters for a successful discharge. In this paper, we suggest a new parameter, printing particles' density and its effects on the stability of the ramp discharge. The maximum current flows of the three electrodes during the ramp reset period were decreased with the increase in the priming particles's density which was explained with the wall charge characteristics and the current flow characteristics obtained by a 2-D simulation.

A Study on the Stability Analysis of Underground Limestone Openings using the Measurement Vibration Waveform (실측진동파형을 이용한 석회석 갱내채광장의 안정성 분석 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.457-475
    • /
    • 2018
  • For increase of reality in numerical analysis, a blasting vibration waveform obtained from field blast operations has been directly used for input parameters of dynamic analysis in the form of vibration velocity. A numerical model was built considering the geological characteristics of underground limestone opening as well as the mining stages in this opening, and the effect of blast operations on stability of underground limestone opening was investigated by dynamic numerical analysis. The adequacy of applying the real vibration waveform to dynamic analysis has been approved from the preliminary analysis, and the dynamic numerical analysis results show that the continuous mining operation can cause the collapse of roof in openings and the active yield zone around openings. Therefore, the additional reinforcements should be applied for ensuring the stability of underground limestone openings.

Numerical Study on Frequency Up-conversion in USPR using MATLAB

  • Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.497-502
    • /
    • 2010
  • In this paper, the O-mode ultrashort-pulse reflectometry (USPR) millimeter-wave signals that propagate into the plasma and cover a frequency bandwidth of 33-158 GHz are examined numerically using MATLAB. Two important processes are involved in the computation: the propagation of the USPR impulse signal through a waveguide and the frequency up-conversion using millimeter-wave mixers. These mixers are limited to intermediate frequency signals that are less than 500 mV; thus, it is necessary to disperse the impulse signal into a chirped waveform using the waveguide. The stationary phase method is utilized to derive a closed-form formula for a chirped waveform under the assumption that the USPR impulse is Gaussian. In the process of frequency up-conversion, the chirped waveform is mixed with the mixer LO signal, and the lower frequency components of the RF signal are removed using high pass filters.

Frequency Domain Waveform Inversion Using $l_1$ -norm ($l_1$-norm을 이용한 주파수 영역 파형역산)

  • Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.118-123
    • /
    • 2007
  • A robust objective function in the frequency domain is applied to the acoustic full waveform inversion. The proposed objective function is defined as $l_1$-norm of residual wavefields in the frequency domain. Generally, the full waveform inversion is extremely sensitive to a number of factors such as parameterization, initial model, noise and so on. The numerical tests were performed for checking the sensitivity to attenuation and several noises. For the comparison with other objective functions, the conventional least-squares method and the logarithmic method were tested under the same condition. The synthetic data examples show that the proposed algorithm is more robust than the well-known methods.

  • PDF