• 제목/요약/키워드: Numerical Wake Model

검색결과 182건 처리시간 0.03초

가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구 (A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage)

  • 구경하;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF

받음각을 갖는 축대칭 물체의 후류 유동 계산 (Computation of Wake Flow of an Axisymmetric Body at Incidence)

  • 김희택;이평국;김형태
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.

MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구 (Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker)

  • 박일룡;김기섭;김제인;설한신;박영하;안종우
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.35-44
    • /
    • 2020
  • Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.

B스플라인 고차 패널법을 이용한 프로펠러 후류감김 모델링 및 정상유동해석 (Wake Roll-up Modeling and Steady Hydrodynamic Analysis of Marine Propellers Using a B-Spline Based Higher-Order Panel Method)

  • 안병권;김건도;이창섭
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.353-360
    • /
    • 2008
  • A numerical model for the analysis of the marine propeller including wake roll-up is presented. In this study, we apply a higher-order panel method, which is based on a B-spine representation for both generations of the propeller geometry and hydrodynamic solutions, to predict the flow around the propeller blades. The present model is validated by comparison of the experimental measurements. The results show that the present method is able to predict the improved pressure distributions on the blade surface, especially very close to propeller tip regions, where other panel methods without the wake roll-up model give erroneous results.

고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근 (A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows)

  • 김세윤;이충구;이계복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2037-2042
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows. Available experimental data were surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and particle Reynolds number were examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden flow in various conditions both qualitatively and quantitatively.

  • PDF

고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근 (A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows)

  • 김세윤;이충구;이계복
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.813-820
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows Available experimental data are surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and. particle Reynolds number are examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden in various flow conditions both qualitatively and quantitatively.

후류 영향을 고려한 풍력 발전 단지 성능 예측 연구 (Prediction of Aerodynamic Performance on Wind Turbines in the Far Wake)

  • 손은국;김호건;이승민;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Although there are many activities on the construction of wind farm to produce amount of power from the wind, in practice power productions are not as much as its expected capabilities. This is because a lack of both the prediction of wind resources and the aerodynamic analysis on turbines with far wake effects. In far wake region, there are velocity deficits and increases of the turbulence intensity which lead to the power losses of the next turbine and the increases of dynamic loadings which could reduce system's life. The analysis on power losses and the increases of fatigue loadings in the wind farm is needed to prevent these unwanted consequences. Therefore, in this study velocity deficits have been predicted and aerodynamic analysis on turbines in the far wake is carried out from these velocity profiles. Ainslie's eddy viscosity wake model is adopted to determine a wake velocity and aerodynamic analysis on wind turbines is predicted by the numerical methods such as blade element momentum theory(BEMT) and vortex lattice method(VLM). The results show that velocity recovery is more rapid in the wake region with higher turbulence intensity. Since the velocity deficit is larger when the turbine has higher thrust coefficient, there is a huge aerodynamic power loss at the downstream turbine.

  • PDF

다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션 (Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio)

  • 하윤진;이영길;강봉한
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

원심회전차 내부유도장에 관한 수치해석적 연구 (Numerical study on flows within an shrouded centrifugal impeller passage)

  • 김성원;조강래
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.