• Title/Summary/Keyword: Numerical Thermal Analysis

Search Result 1,682, Processing Time 0.035 seconds

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.

A Numerical Simulation of Regenerative Cooling Heat Transfer for the Rocket Engine (로켓엔진의 재생 냉각 열전달 해석)

  • 전종국;박승오
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • This paper presents the numerical thermal analysis for regeneratively cooled rocket thrust chambers. An integrated numerical model incorporates computational fluid dynamics for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels. The flow and temperature fields in rocket thrust chambers is assumed to be axisymmetric steady state which is presumed to the combustion liner. The heat flux computed from nozzle flow is used to predict the temperature distribution of the combustion liner. As a result, we present the wall temperature of combustion liner and the temperature change of coolant.

  • PDF

Analysis of Thermal Distribution for LCD-TV Using Numerical Simulation and Experiment (수치해석 및 실험에 의한 LCD-TV의 열분포 분석)

  • Kim, Yoon-Seok;Lee, Jeoung-Gwen;Chung, Du-Hwan;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.302-307
    • /
    • 2003
  • Demand of the LCD-TV is remarkably increasing with development of the LCD technology in these days. Thus, this research has analyzed thermal problems such as heat transfer characteristics inside and outside the LCD-TV using numerical simulation and experiments. The simulated results have been compared with the experimental results using an infrared (IR) camera and T-type thermocouples. The optimal design of structure has been proposed to improve the thermal efficiency of radiation from the comparison.

  • PDF

A Numerical Model to Analyze Thermal Behavior of a Radiative Heater Disigned for Flip-Chip Bonders (플립칩 본더용 가열기의 열특성 해석을 위한 수치모델)

  • Lee S. H;Kwak H. S;Han C. S;Ryu D. H
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • This study presents a numerical model to analyze dynamic thermal behavior of a hot chuck designed for flip-chip bonders. The hot chuck of concern is a heater which has been specifically developed for accomplishing high-speed and ultra-precision soldering. The characteristic features are radiative heat source and the heating tool made of a material of high thermal diffusivity. A physical modeling has been conducted for the network of heat transport. A simplified finite volume model is deviced to simulate time-dependent thermal behavior of the heating tool on which soldering is achieved. The reliability of the proposed numerical model is verified experimentally. A series of numerical tests illustrate the usefulness of the numerical model in design analysis.

Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow (열성층 배관 유동에 대한 3차원 열전달 해석)

  • Jo Jong Chull;Kim Byung Soon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

Numerical Analysis on the Thermal Choking Process In a Model SCRamjet Engine (모델 스크림제트 연소기내의 열질식과정 수치해석)

  • Moon, G.W.;Choi, J.Y.;Jeung, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.76-84
    • /
    • 2000
  • A numerical study was conducted for the investigation of thermal choking process in a model scramjet engine based on the experimental results at the Australian National University. The results of numerical simulation showed that thermal choking process could be related to the interaction between hypersonic flow and fuel-air mixing process. Especially, we could make sure that turbulent mixing was most important parameter to the thermal choking process.

  • PDF

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System (접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구)

  • Lee, Ju-Han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Kyu;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

3-Dimensional Numerical Analysis for Thermal Stratification in Surgeline in Nuclear Power Plant (원전 밀림관 열성층의 3 차원 수치해석)

  • Kim, Young-Jong;Kim, Maan-Won;Ko, Eun-Mi
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.729-734
    • /
    • 2008
  • A thermal stratification may occur in the horizontal parts of the surge line during operating transients of the pressurizer, which produces relatively high fatigue usage factor. Heat-up transient is the most severe case among the transient conditions. In this study, to study the relationship between the magnitude of thermal stratification and the length of vertical part of the surge line, some parametric fluid-structure interaction (FSI) analyses with different length variables of the vertical part of the surge line were performed for plant heat-up transient condition by using 3-dimensional numerical analysis. The conservativeness of the traditional finite element model for thermal stratification analysis based on the conservative assumption in the surge line was also discussed by comparison of the results of 3-dimensional transient FSI analysis of this study. Stresses calculated with 3-dimensional transient model were considerably reduced comparing with the traditional analysis.

  • PDF