• 제목/요약/키워드: Numerical Test

검색결과 4,771건 처리시간 0.031초

고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가 (Development and performance evaluation of SB3-level roadside barrier for highway transition zone)

  • 이정휘;조종석;이재혁
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Identification of the strain-dependent coefficient of permeability by combining the results of experimental and numerical oedometer tests with free lateral movement

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.1-14
    • /
    • 2022
  • The key parameter that affects the consolidation process of soil is the coefficient of permeability. The common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental results to validate our numerical model and to define the model input parameter. Finally, by combining the experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability.

경사파중 수중평판에 의한 파랑변형 (Wave Diffractions by Submerged Flat Plate in oblique Waves)

  • 조일형;김현주
    • 한국항만학회지
    • /
    • 제10권1호
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

실내모형실험과 수치해석을 통한 지중매설된 GFRP관의 거동 특성 (Verification of Applicability of Buried GFRP Pipe through Model Test and Numerical Analysis)

  • 권혁준;윤명준;김진현;이명재;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1050-1059
    • /
    • 2010
  • The GFRP(Glass-Fiber Reinforced Plastic) Pipe is designed to behave safely against the external forces and to secure stability of deformation and settlements in pipe, Since it is laid under the ground. In this syudy, the evaluation for stability was carried out by performing the preliminary numerical analysis to decide the sclae effect in case of indoor model test. As a result of, strain of laying pipes is preponderantly reviewed. Numerical analysis is conducted to evaluate on the field application through the comparison concerning relations between deformation and differential settlement in the GFRP and hume pipes.

  • PDF

안벽구조물에 대한 Centrifuge 모형실험과 수치해석 (Centrifuge Model Test and Numerical Analysis on Coastal Structure)

  • 유남재;김동건;전상현
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.65-72
    • /
    • 2009
  • In this paper centrifuge model tests and numerical analysis on the coastal structure on the marine deposits of sand were performed to investigate the behavior of structure and foundation under the condition of wave action in field. In centrifuge model experiments, construction sequence of coastal structure such as preparation of sand deposit, excavation replacement, rubble mound with crushed stones and installment of coastal structure was reconstructed and the behavior of ground settlement during stage of construction was observed during tests. For the final stage of simulating the horizontal movement of coastal structure due to wave force, horizontal load was applied by horizontal loading apparatus being specially designed so that horizontal displacement of structure could be observed. Numerical analysis were also carried out and its results were compared with test results to assess the property of centrifuge mode experiments with respect to the behavior of structure as well as ground.

  • PDF

Static aerodynamic force coefficients for an arch bridge girder with two cross sections

  • Guo, Jian;Zhu, Minjun
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.209-216
    • /
    • 2020
  • Aiming at the wind-resistant design of a sea-crossing arch bridge, the static aerodynamic coefficients of its girder (composed of stretches of π-shaped cross-section and box cross-section) were studied by using computational fluid dynamics (CFD) numerical simulation and wind tunnel test. Based on the comparison between numerical simulation, wind tunnel test and specification recommendation, a combined calculation method for the horizontal force coefficient of intermediate and small span bridges is proposed. The results show that the two-dimensional CFD numerical simulations of the individual cross sections are sufficient to meet the accuracy requirements of engineering practice.

Model test and numerical simulation of OC3 spar type floating offshore wind turbine

  • Ahn, Hyeon-Jeong;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Nowadays, the study on Floating Offshore Wind Turbines (FOWTs) is being performed globally. Dozens of numerical simulation tools have been developed for designing FOWTs and simulating their performances in combined wave and wind environments. On the other hand, model tests are still required to verify the results obtained from numerical simulation tools. To predict seakeeping performance of the OC3-Hywind platform, a OC3 spar model moored by a 3-leg catenary spread mooring system with a delta connection was built with a 1/128 scale ratio. The model tests were carried out for various sea states, including rotating rotor effect with wind in the Ocean Engineering Wide Tank, University Of Ulsan (UOU). The model test results are compared with the numerical simulations by UOU in-house code and FAST.

낙동강 취수보개체를 위한 이동상 수리모형실험 (The Movable Hydraulic Model Test for Exchange of Intake Weir in the Nakdong River)

  • 김성원
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.35-42
    • /
    • 2000
  • In this study, the movable bed model testing was carried out so as to analyze bed profile changes including predicting scouring and deposition of bed profile and to solve hydraulic problems affecting with bed and both-bank between upstream and downstream of intake weir in the Nakdong river channel. The movable bed model testing consists of fundamental test, movable model test and numerical analysis method respectively. The fundamental test was enforced to analyze relationship of discharge and sediment load in the tilting flume. When the movable model test was worked, it was shown that sediment budget between input sediment load and output sediment load was balanced exactly. As a result of movable model test, it was presented that scouring and deposition changes in quantities between the upstream and downstream of modification weir were less than those of nature and planning weir. Finally, numerical analysis method was operated by 1-dimensional bed profile changes model ; HEC-6 model so as to complement unsolving hard problems during movable model test. So, modification weir will sustained the stable bed profile changes than any other weirs in the study channel.

  • PDF

수치해석을 이용한 철도차량 동특성 주행시험기 활용성 기초 검토 (The Basic Applicability Study of the Roller Test Rig using Numerical Analysis)

  • 정우진;정흥채
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.101-109
    • /
    • 2005
  • Roller test rig is the test facility for acquiring the data related dynamic characteristics of rolling stocks handily. The test method using roller test rig could be convenient to Set information about hunting and others rather than using field test. However, adopting this method brings about the inconvenient calibration process for measured data. This kind of additional effort results from the difference of contact condition between field test and test roller rig. In this paper, the numerical approach is used to get the amount of calibration. The analysis results of the field test are compared with results of the roller test rig to know what kind of alternation happens according to the change of contact condition.