• Title/Summary/Keyword: Numerical Model Simulation

Search Result 4,400, Processing Time 0.028 seconds

Cost Analysis Model according to Mortality in Land-based Aquaculture (육상수조 어류양식 생존율에 따른 비용분석모형)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • Fish mortality is the most important success factor in aquaculture management. To analyze the effect of mortality considering biological and economic condition is a important problem in land-based aquaculture. This study is aimed to analyze the effect of mortality for duration of cultivation in land-based aquaculture. This study builds the mathematical model that finds the value of decision variable to minimize cost that sums up the water pool usage cost, sorting cost, fingerling cost and feeding cost under critical standing corp constraint. The proposed mathematical model involves many aspects, both biological and economical: (1) number of fingerlings (2) timing and number of batch splitting event, based on (3) fish growth rate, (4) mortality, and (5) several farming expense. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems (토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Reduced Scale Model Experiments and Numerical Simulation for Flow Uniformity in de-NOx SCR Reactor (배연탈질 SCR 반응기내 유동균일 화를 위한 축소모형실험 및 전산해석)

  • 이인영;김동화;이정빈;류경옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • SCR (Selective Catalytic Reduction) process is presently considered as one of the most effective techniques for removing nitric oxides from exhaust gases. In this study, based on the conceptually designed SCR reactor of 500 MW coal fired power plant. a reduced scale (1/20) SCR reactor model was made to analyze the flow pattern in front of catalyst layer according to the guide vane's design factors such as the number, interval, and angle of vanes. The results of the test were compared to those numerical simulation in order to assure the reliability of two methods. On the basis of our study. the critical Reynolds number (2.0$\times$ 10$^{5}$ ) was proposed for ensuring the similarity between the reduced scale model and the prototype of SCR reactor. Optimum design parameters of guide vanes were determined as follows, 4 vanes, the first vane angle of 93$^{\circ}$, and the vane intervals of 0.85 S/n, 1.05 S/n, 1.1 S/n, 1.0S/n, 1.0S/n (S: the distance of duct, n: the number of guide vanes). The excellent agreement between the results of the numerical simulation and the reduced scale model provides the validation of two methods for prediction of flow through SCR reactor.

  • PDF

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Numerical Simulation of Steel Mixing during Sequential Casting of Dissimilar Grades in the Continuous Caster (연속주조시 강종 혼합에 관한 수치해석적 연구)

  • Cho, M.J.;Kim, I.C.;Kim, S.J.;Park, H.;Lee, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.436-443
    • /
    • 2001
  • In order to investigate the mixing of dissimilar grades during the arbitrary grade transition in bloom caster, a computational model has been developed. The model is fully transient and consists of two sub models, which account for mixing in the bloom tundish, mixing in the strand. The developed model was verified using concentration histories measured on 1 : 1 scale bloom tundish water model. The result of numerical model showed good agreement with the experimental results of water model. By using this numerical model, the mixing of dissimilar grades in bloom caster has been simulated. As that result, the characteristics of the steel mixing in the bloom tundish and strand was showed and the amount of the intermixed grade bloom was predicted.

  • PDF

The Development of Hazardous Waste Compact Dump incinerator for Low Emissions (저공해 compact 유해폐기물 dump 소각기 개발)

  • 전영남;채종성;정오진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.653-663
    • /
    • 2000
  • A lot of hazardous wastes are discharged as by-products of working process by industrial development. Hazardous wastes is physical characteristics of difficult destruction at hight temperature. Numerical simulation and combustion experiment performed of dump incinerator for hazardous waste incineration. For the numerical simulation, the SIMPLEST algorithm was used to ensure rapid converge A K-$\varepsilon$ model was incorporate for the enclosure of turbulence flow. Combustion model was used by ESCRS (extended simple chemically reacting system) model available of CHEMKIN thermodynamic data for the source term of species conservation equation or energy equation. Radiation model is used by six flux model. A parametric screening studies was carried out through numerical simulation and experiment. Residence time and concentration in the incinerator was strongly dependent on the parameters of mixture velocity, mixture equilibrium ratio, surrogate velocity and surrogate equilibrium ratio.

  • PDF

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF