• Title/Summary/Keyword: Numerical Information

Search Result 4,660, Processing Time 0.036 seconds

Numerical Analysis for Injection Molding of Precision Electronics Parts using Three-Dimensional Solid Elements (3차원 입체요소를 사용한 정밀 전자부품의 사출성형해석)

  • Park K.;Park J. H.;Choi S. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.68-75
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The proposed approach are then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

  • PDF

Effect of Particle Concentration on Digital Holographic PTV Measurement (입자 농도가 Digital Holographic PTV 측정에 미치는 영향에 관한 연구)

  • Kim Seok;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.929-934
    • /
    • 2006
  • The digital HPTV(holographic particle tracking velocimetry) velocity field measurement system consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved the two frame PTV algorithm to extract 3-D displacement information of each particle located in 3D space. Because a digital CCD camera was used, some factors such as spatial resolution, numerical aperture, and particle concentration influenced on the performance of the developed digital HPTV. Especially, the particle concentration $(C_o)$ affected the reconstruction efficiency and recovery ratio in the numerical reconstruction and particle extraction procedure. In this paper, the effect of particle concentration reconstruction efficiency and recovery ratio were analyzed experimentally. Optimal particle concentration was found to be in the range of $C_o=11{\sim}17\;particles/mm^3$.

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

A Procedure for Computing Conduction Time Series Factors by Numerical Method (전도 시계열 계수를 수치해석으로 구하는 방법)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.77-84
    • /
    • 2017
  • The purpose of this paper is to propose the way of computing conduction time series factors (CTSF) using numerical method. After the accuracy of the numerical solution procedure being verified, the method is applied to the wall type 24 and roof type 14 of ASHARE to find the conduction time series coefficients, so called conduction time series factors. The results agree well with the values presented in the ASHRAE handbook. The method proposed can be easily applied to find unknown CTSF for more complex structures. It provides information about the temperature changes at a given location and time, thus validity of generated CTSF can be checked easily.

A Numerical Method for Macro-fiber Distribution and Orientation In Hardened Concrete Components

  • Li, Mao;Kim, Jin-man;Choi, Hong-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.85-86
    • /
    • 2017
  • Fiber reinforced concrete as a construction material has been widely used. Fibers, as the reinforced component, the physical properties and the distribution influence the engineering properties of the composite. To illustrate the engineering properties, fiber distribution and orientation are necessary. Steel fibers can be easily captured by X-ray, but it is difficult them to express being numerical because they don't show as perfect circular shape on the grinding face. To get the more exact information for this, the numerical method for the orientation and distribution of fibers have to be more elaborately. This paper presents a possible method which makes the calculate for orientation possible.

  • PDF

The Flow Analysis of Past Flow a Circular Cylinder By Direct Numerical Simulation (DNS에 의한 원주후류에 대한 유동해석)

  • ;Mamoru TANAHASHI;Toshio MIYAUCHI
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-57
    • /
    • 2001
  • Laminar two-dimensional time-dependent flow past a circular cylinder is numerically investigated using direct numerical simulation for the low Reynolds number (Re=164∼280). The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. The convection term is applied by the 7th order up wind scheme and the pressure and viscosity terms are applied by the 4th order central difference. The grid system makes use of the regular grid system and it is generated by an equation. The calculated results of drag coefficients, lift coefficients, pressure distributions, and vorticity contours and other information are compared with experimental and numerical ones. These results obtained by the present DNS show good agreement with the previous studies.

  • PDF

Wavelet-based automatic identification method of axle distribution information

  • Wang, Ning-Bo;Ren, Wei-Xin;Chen, Zhi-Wei
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.761-769
    • /
    • 2017
  • Accurately extracting the axle distribution information of a passing vehicle from bridge dynamic responses experiences a key and challenging step in non-pavement bridge weigh-in-motion (BWIM). In this article, the wavelet transformation is adopted and the wavelet coefficient curve is used as a substitute for dynamic response. The driving frequency is introduced and expanded to multi-axle vehicle, and the wavelet coefficient curve on specific scale corresponding to the driving frequency is confirmed to contain obvious axle information. On this basis, an automatic method for axle distribution information identification is proposed. The specific wavelet scale can be obtained through iterative computing, and the false peaks due to bridge vibration can be eliminated through cross-correlation analysis of the wavelet coefficients of two measure points. The integrand function that corresponds to the maximum value of the cross-correlation function is used to identify the peaks caused by axles. A numerical application of the proposed axle information identification method is carried out. Numerical results demonstrate that this method acquires precise axle information from the responses of an axle-insensitive structure (e.g., girder) and decreases the requirement of sensitivity structure of BWIM. Finally, an experimental study on a full-scale simply supported bridge is also conducted to verify the effectiveness of this method.

Trend-based Sequential Pattern Discovery from Time-Series Data (시계열 데이터로부터의 경향성 기반 순차패턴 탐색)

  • 오용생;이동하;남도원;이전영
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.27-45
    • /
    • 2001
  • Sequential discovery from time series data has mainly concerned about events or item sets. Recently, the research has stated to applied to the numerical data. An example is sensor information generated by checking a machine state. The numerical data hardly have the same valuers while making patterns. So, it is important to extract suitable number of pattern features, which can be transformed to events or item sets and be applied to sequential pattern mining tasks. The popular methods to extract the patterns are sliding window and clustering. The results of these methods are sensitive to window sine or clustering parameters; that makes users to apply data mining task repeatedly and to interpret the results. This paper suggests the method to retrieve pattern features making numerical data into vector of an angle and a magnitude. The retrieved pattern features using this method make the result easy to understand and sequential patterns finding fast. We define an inclusion relation among pattern features using angles and magnitudes of vectors. Using this relation, we can fad sequential patterns faster than other methods, which use all data by reducing the data size.

  • PDF

Uncertainties in blast simulations evaluated with Smoothed Particle Hydrodynamics method

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.771-787
    • /
    • 2020
  • The paper provides an inside look into experimental measurements, followed by numerical simulations and their related uncertainties. The goal of the paper is to present findings related to blast loading and the handling of defects that are inherent in experiments. Very often it might seem that experiments are simplified reflections of real-life conditions. In most cases this is true, but there is a good reason for that. The more complex an experiment is, the larger the amount of uncertainties that can be expected. This especially applies when the blast loading of concrete is the subject of research. When simulations fail to reproduce the results of experimental measurements, it does not necessarily mean there is something wrong with the numerical model. The problem could be missing information. Put differently, the numerical simulation may lack information that seemed irrelevant with regard to the experiment. In the presented case, a reference simulation with a proven material model unexpectedly failed to replicate the results of an experiment where concrete slabs were exposed to blast loading. This resulted in a search for possible unknowns. When all of the uncertainties were examined, the missing information turned out to be the orientation of the charge to the concrete slab. Since the experiment was burdened with error, a sensitivity study had to take place so the influence of this factor could be better understood. The findings point to the fact that even the smallest defect during experiments must somehow be taken into account when designing numerical simulations. Otherwise, the simulations are not correlated to the experiments, but merely to some expectations.

Performance of Selective Decode-and-Forward Relay Networks with Partial Channel Information

  • Rui, Xianyi
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.139-141
    • /
    • 2010
  • In this letter, closed-form approximations for outage probability and symbol error rate are presented for a selective decode-and-forward relay network with partial channel information. An independent but not identically distributed Rayleigh fading environment is considered. Numerical and simulated results demonstrate the validity of the analytical results.