• 제목/요약/키워드: Numerical Experiment

검색결과 2,460건 처리시간 0.031초

영일만의 조석잔차류 거동 특성 (The Characteristics of Tidal Residual Current in Youngil Bay)

  • 김종규
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권1호
    • /
    • pp.14-23
    • /
    • 2001
  • 영일만의 해수순환에 영향을 미치는 조석잔차류와 형산강 하천수의 거동 특성을 규명하기 위하여 2차원 수치모형실험을 수행하였다. 수치모형실험의 결과는 기존의 관측자료들과 잘 일치하였으며, 영일만의 북쪽 달만갑 연안으로부터 포항신항을 거쳐 장기갑 연안을 따라 외해로 빠져나가는 조석잔차류 거동을 잘 재현하였다. 영일만의 잔차류에 대한 조류의 영향은 미약하며 파랑이나 바람에 의한 영향이 크지만 영일만의 전형적인 조석잔차류의 거동에 미치는 형산강 하천수의 역할은 지배적인 것으로 나타났다.

  • PDF

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정- (A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

로터 익형 KU109C 풍동시험 및 천이유동 해석결과의 검증 (VALIDATION OF TRANSITION FLOW PREDICTION AND WIND TUNNEL RESULTS FOR KU109C ROTOR AIRFOIL)

  • 전상언;사정환;박수형;김창주;강희정;김승범;김승호
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.54-60
    • /
    • 2012
  • Transition prediction results are validated with experimental data obtained from a transonic wind tunnel for the KU109C airfoil. A Reynolds-Averaged Navier-Stokes code is simultaneously coupled with the transition transport model of Langtry and Menter and applied to the numerical prediction of aerodynamic performance of the KU109C airfoil. Drag coefficients from the experiment are better correlated to the numerical prediction results using a transition transport model rather than the fully turbulent simulation results. Maximum lift coefficient and drag divergence at the zero-lift condition with Mach number are investigated. Through the present validation procedure, the accuracy and usefulness of both the experiment and the numerical prediction are assessed.

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

궤도차량용 보조동력장치 엔진룸 내부 열유동 특성에 관한 연구 (A Study on Thermal and Fluid Characteristics inside Engine Room of Auxiliary Power Unit for Tracked Vehicle)

  • 이태의;서정세;정상환;박영식
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.85-93
    • /
    • 2009
  • This research is intended to grasp the characteristics of heat flow inside auxiliary power device engine room to obtain the design basic data through numerical analysis and experiment. For experiment cost reduction, numerical analysis was done to obtain quantitative data by observing the change in temperature distribution of major parts according to changes in normal condition, incompressible condition, engine surface heat emission rate and absorption temperature with the use of commercial STAR-CD. The experiment was done by grasping the temperature distribution of major interested parts inside engine room in loaded and unloaded conditions during engine operation. The temperature distribution data here will serve as useful design data during APU engine room designing.

Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증 (Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper)

  • 김용희;우민아;강범수;김정
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.

A Study on Behavioral Characteristics of Track Roadbed according to Steel Pipe Press-in Excavation during Construction of Underground Railway Crossing

  • Kim, Young-Ha;Eum, Ki-Young;Kim, Jae-Wang
    • International Journal of Railway
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2013
  • In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.

댐 붕괴 흐름에 의한 직립 홍수터의 범람 실험 및 모의 (Numerical Simulation and Laboratory Experiment of Flooding on a Perpendicular Floodplain with Dam-Break Flows)

  • 황승용;김형석
    • 대한토목학회논문집
    • /
    • 제41권3호
    • /
    • pp.219-227
    • /
    • 2021
  • 불연속 지형을 지나는 천수 흐름을 해석할 수 있는 Hwang의 기법이 채택된 수치 모의를 댐 붕괴 흐름에 의한 직립 홍수터의 범람 실험과 비교하였다. 모의 결과는 저수지, 저수로, 홍수터로 이루어진 실험 수로에서 측정한 결과와 잘 일치하였다. 특히, 댐 붕괴 흐름이 직립 홍수터로 차고 빠지는 과정이 잘 모의되었다. 흐름 저항의 종류에 따른 모의 결과의 차이는 미미하였다. 이 연구를 바탕으로 도심 하천의 범람 예측에서 정확도를 높일 수 있을 것으로 기대된다.

금형주조기를 이용한 알루미늄 합금 금형의 수치해석적 열변형 해석과 실험에 관한 연구 (Numerical and Experimental Studies on Thermal Strain Analysis of Al Alloy Casting Mold using Metal Foundry)

  • 오율권;김용범;윤희성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2050-2054
    • /
    • 2007
  • This study numerically and experimentally investigated on thermal strain analysis of aluminum alloy casting mold using metal foundry. To predict the numerical result of thermal strain in Al alloy casting mold during the cooling process, it is performed the investigation of temperature distribution, stress and displacement based on the physical properties of Al alloy. In results of this study, Al alloy casting mold represented rapidly cooling graph during initial 20minutes after beginning cooling process, therefore value of stress and displacement is rapidly changed during initial 20minutes after beginning cooling process. In addition to, temperature distribution obtained by experiment confirmed corresponding pattern then compared numerical analysis with experiment. These results are distribute to make the effective and the high precision casting mold.

  • PDF