• Title/Summary/Keyword: Numerical Approximation

Search Result 1,038, Processing Time 0.024 seconds

Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds Number Flow Under an Electromagnetic Force

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.363-375
    • /
    • 2002
  • The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a circular cylinder is investigated by computation. Two-dimensional unsteady flow computation for Re=10$^2$is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of circular cylinder cross-flow, leading to reduction of drag.

Serendipity and bubble plus hierarchic finite elements for thin to thick plates

  • Croce, Lucia Della;Scapolla, Terenzio
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.433-448
    • /
    • 2000
  • In this paper we deal with the numerical solution of the Reissner-Mindlin plate problem with the use of high order finite elements. In previous papers we have solved the problem using approximation spaces of Serendipity type, in order to minimize the number of internal degrees of freedom. Since further numerical experiences have evidenced that the addition of bubble functions improved the quality of the results we have modified the previous family of hierarchic finite elements, adding internal degrees of freedom, to make a systematic analysis of their performance. Of course, more degrees of freedom are introduced. Nonetheless the numerical results indicate that the reduction of the error outnumbers the increase of degrees of freedom and therefore bubble plus elements are preferable.

UNDERSTANDING OF DISK STRUCTURE DURING THE COLLAPSE OF THE VISCOUS DISK USING SELF-SIMILAR AND NUMERICAL SOLUTIONS (상사해(相似解) 및 수치해를 이용한 점성원반 붕괴시 원반 구조 이해)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.37-42
    • /
    • 2005
  • The problem for the collapse of isothermal and rotational self-gravitational viscous disk is considered. We derive self-similar solutions for the cases in the inner and outer regions of the self-gravitational viscous disk. We show that surface density depends on ${\sigma}_0/r$ in the outer region of the disk using a slow accretion approximation. The ratio of a modified viscous parameter in the outer region of the disk to that in the inner region is 0.042. We resorted to numerical solutions of governing equations of the self-gravitational disk to find out profiles of ${\sigma}$, u and ${\upsilon}$ in terms of x. Their profiles were rapidly changed around the innermost region of the self-gravitational disk. It indicates that a new object was formed in the most inner region of the disk.

EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가)

  • Myong H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

Solving Dynamic Equation Using Combination of Both Trigonometric and Hyperbolic Cosine Functions for Approximating Acceleration

  • Quoc Do Kien;Phuoc Nguyen Trong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.481-486
    • /
    • 2005
  • This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.

Moving Mesh Application for Thermal-Hydraulic Analysis in Cable-In-Conduit-Conductors of KSTAR Superconducting Magnet

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Keeman;Jinliang He
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.522-531
    • /
    • 2002
  • In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

A study on the cooling analysis of plastic products with high aspect ratio (고형상비를 갖는 플라스틱제품의 냉각해석에 관한 연구)

  • Hwang, Si-Hyun;Seo, Gi-Yeong;Kim, Chul-Kyu;Kim, Meong-Gi;Ji, Seong-Dae;Jung, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2008
  • Injection molding is representative process of plastic production. Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the various conditions. In this study, moldflow software was used to analyze the cooling analysis. The results of cooling analysis and testing catapult were compared for plastic products.

  • PDF

Numerical predictions of the time-dependent temperature field for the 7th Cardington compartment fire test

  • Lopes, Antonio M.G.;Vaz, Gilberto C.;Santiago, Aldina
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.421-441
    • /
    • 2005
  • The present work reports on a numerical simulation of a compartment fire. The fire was modeled using a simplified approach, where combustion is simulated as a volumetric heat release. Computations were performed with the commercial code CFX 5.6. Radiation was modeled with a differential approximation (P1 model), while turbulence effects upon the mean gas flow were dealt with a SST turbulence model. Simulations were carried out using a transient approach, starting at the onset of ignition. Results are provided for the temperature field time evolution, thus allowing a direct comparison with the analytical and experimental data. The high spatial resolution available for the results proved to be of great utility for a more detailed analysis of the thermal impact on the steel structure.

A numerical study of the second-order wave excitation of ship springing by a higher-order boundary element method

  • Shao, Yan-Lin;Faltinsen, Odd M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1000-1013
    • /
    • 2014
  • This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM) based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.