• 제목/요약/키워드: Numerical Approximation

검색결과 1,034건 처리시간 0.028초

과열비에 따른 유체밀도 변화를 고려한 복사유체 유동 해석 (Plow Analysis for Radiating Fluid with Density Variation affected by Overheat Ratio)

  • 한조영;채종원;박응식;남문경
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.75-78
    • /
    • 2005
  • A numerical investigation has been performed to discuss the radiation-affected steady-laminar natural convection in an enclosure under a large temperature difference. Due to inherent nature of this study, the Boussinesq approximation is no longer valid. Therefore the radiating fluid in an enclosure is treated as a ideal gas. To examine the effects of thermal radiation on thermo-fluid dynamic behaviors in complex geometries, two incomplete partitions are introduced. Based on the results of this study, the dispositions of incomplete partitions with radiatively participating medium are found to incur a distinct difference in fluid-dynamic as well as thermal behavior.

  • PDF

3차 B-spline 함수를 이용한 열전도 및 유체문제의 해석 (Analysis for computing heat conduction and fluid problems using cubic B-spline function)

  • 김은필
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.1-8
    • /
    • 1998
  • We make use of cubic B-spline interpolation function in two cases: heat conduction and fluid flow problems. Cubic B-spline test function is employed because it is superior to approximation of linear and non-linear problems. We investigated the accuracy of the numerical formulation and focused on the position of the breakpoints within the computational domain. When the domain is divided by partitions of equal space, the results show poor accuracy. For the case of a heat conduction problem this partition can not reflect the temperature gradient which is rapidly changed near the wall. To correct the problem, we have more grid points near the wall or the region which has a rapid change of variables. When we applied the unequally spaced breakpoints, the results show high accuracy. Based on the comparison of the linear problem, we extended to the highly non-linear fluid flow problems.

  • PDF

점성 및 비점성 유동장 해석을 위한 BGK 수치기법의 효율적 계산 (Efficient Calculation of Gas-kinetic BGK scheme for Analysis of Inviscid and Viscous Flows)

  • 채동석;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 1998
  • From the Boltzmann equation with BGK approximation, a gas-kinetic BGK scheme is developed and methods for its efficient calculation, using the convergence acceleration techniques, are presented in a framework of an implicit time integration. The characteristics of the original gas-kinetic BGK scheme are improved in order for the accurate calculation of viscous and heat convection problems by considering Osher's linear subpath solutions and Prandtl number correction. Present scheme applied to various numerical tests reveals a high level of accuracy and robustness and shows advantages over flux vector splittings and Riemann solver approaches from Euler equations.

  • PDF

Head Slider Designs Using Approximation Methods

  • Yoon, Sang-Joon;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.37-44
    • /
    • 2004
  • This paper presents an approach to optimally design the air bearing surface (ABS) of the head slider by using the approximation methods. The reduced basis concept is used to reduce the number of design variables. In the numerical calculation, the progressive quadratic response surface modeling (PQRSM) is used to handle the non-smooth and discontinuous cost function. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state and track seek operations. The optimal solutions of the sliders, whose target flying heights are 12 nm and 9 nm, are automatically obtained. The flying heights during the steady state operation become closer to the target values and the flying height variations during the track seek operation are smaller than those for the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band.

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

APPLICATION OF ADOMIAN'S APPROXIMATION TO BLOOD FLOW THROUGH ARTERIES IN THE PRESENCE OF A MAGNETIC FIELD

  • Haldar, K.
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.267-279
    • /
    • 2003
  • The present investigation deals with the application of Adomian's decomposition method to blood flow through a constricted artery in the presence of an external transverse magnetic field which is applied uniformly. The blood flowing through the tube is assumed to be Newtonian in character. The expressions for the two-term approximation to the solution of stream function, axial velocity component and wall shear stress are obtained in this analysis. The numerical solutions of the wall shear stress for different values of Reynold number and Hartmann number are shown graphically. The solution of this theoretical result for a particular Hart-mann number is compared with the integral method solution of Morgan and Young[17].

Torque Calculation Method of a Permanent Magnet Spherical Motor

  • Lee, Hyung-Woo;Kang, Dong-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.431-434
    • /
    • 2010
  • This paper presents the torque calculation method of a permanent magnet spherical motor. To calculate using the finite element method (FEM), three-dimensional (3D) FEM must be used. However, since the method requires excessive time and memory, an easier torque calculation method is hereby presented. In the proposed method, it is very important to obtain the approximation function of the torque profile curve. We present the approximation method of the torque profile curve and show that the torque calculation result can approximate the torque obtained by 3-D FEM.

OPTIMAL CONSUMPTION/INVESTMENT AND LIFE INSURANCE WITH REGIME-SWITCHING FINANCIAL MARKET PARAMETERS

  • LEE, SANG IL;SHIM, GYOOCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.429-441
    • /
    • 2015
  • We study optimal consumption/investment and life insurance purchase rules for a wage earner with mortality risk under regime-switching financial market conditions, in a continuous time-horizon. We apply the Markov chain approximation method and suggest an efficient algorithm using parallel computing to solve the simultaneous Hamilton-Jaccobi-Bellman equations arising from the optimization problem. We provide numerical results under the utility functions of the constant relative risk aversion type, with which we illustrate the effects of regime switching on the optimal policies by comparing them with those in the absence of regime switching.

Variable Structure Control with Optimized Sliding Surface for Spacecraft Slewing Maneuver

  • Cho, Sang-Bum;Moon, Gwan-Young;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.65-72
    • /
    • 2006
  • A variable structure controller with an optimized sliding surface is proposed for slew maneuver of a rigid spacecraft. Rodrigues parameters are chosen to represent the spacecraft attitude. The quadratic type of performance index is used to design the sling surface. For optimization of the sliding surface, a Hamilton- Jacobi-Bellman equation is formulated and it is solved through the numerical algorithm using Galerkin approximation. The solution denotes a nonlinear sliding surface, on which the trajectory of the system satisfies the optimality condition approximately. Simulation result demonstrates that the proposed controller is effectively applied to the slew maneuver of a rigid spacecraft.

먼지 산란의 몬테카를로 시뮬레이션 (MONTE-CARLO SIMULATION OF THE DUST SCATTERING)

  • 선광일
    • 천문학논총
    • /
    • 제24권1호
    • /
    • pp.43-51
    • /
    • 2009
  • 이 연구에서는 임의의 밀도 분포를 갖는 성간 먼지 구름에 의해 산란되는 산란광을 분석할 수 있는 몬테카를로 시뮬레이션 코드를 개발하였다. 개발된 코드의 신뢰성을 확보하기 위해 구 대칭의 성간먼지 구름의 중심에 별이 있고, 별빛이 얼마만큼 산란되어 나오는 지 계산하여 Code (1973)의 결과와 비교하였으며, Code의 근사식과 매우 잘 일치하는 결과를 주는 것을 확인하였다. 이 코드는 우리 은하뿐만 아니라 외부은하의 경우에도 손 쉽게 확장이 가능하다. 개발된 코드는 과학위성 1호로 관측된 원자외선 연속복사광의 분석에 적용하여 성간먼지 구름의 특성과 우리 은하의 복사장의 분포를 연구하는 데 사용하고자 한다.