• 제목/요약/키워드: Numerical Analysis

검색결과 20,912건 처리시간 0.042초

수치해석을 이용한 와전류센서의 특성해석 (Characteristics Analysis Eddy Current Sensor Using by Numerical Analysis)

  • 최덕수;이향범;나은진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1000-1002
    • /
    • 2003
  • The characteristics of eddy current sensor has been analyzed by using numerical analysis which is performed by modeling eddy current sensor and analytic object into three-dimension axis-symmetry in this paper. The eddy current sensor is modeled as cylindrical shape with variation of inside and outside diameter and frequency range between 1[kHz] and 1[MHa] for numerical analysis. The value of impendence on eddy current sensor depending on frequency variation was calculated through numerical analysis. The characteristics of eddy current sensor can be studied by normalized impendence which is gained from the calculated impendence. Therefore, sensitivity of eddy current sensor depending on frequency, inside and outside diameter can be known by investigating diameter of half circle impendence and its locus.

  • PDF

초음파 모터의 설계와 유한요소해석 (Design and Finite Element Analysis of an Ultrasonic Motor.)

  • 이석희;이창환;정현교;이중건;홍국선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.79-81
    • /
    • 1998
  • This paper presents analytic and numerical analysis of ultrasonic motor, specially linear motion ultrasonic machine. For rough estimation of characteristics of linear ultrasonic motor, the analytic method is used and a three-dimensional numerical analysis with experimental material data using ABAQUS, is performed. The validity of analysis is confirmed by comparing experimental results with numerical ones.

  • PDF

Effect of Welding Sequence on the Residual Stresses of Plate with Longitudinal Stiffeners

  • Kim, N.I.;Lee, J.S.;Choe, W.H.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.10-14
    • /
    • 2004
  • In this paper, a study on the residual stress of plate with longitudinal stiffeners is explained in terms of the welding sequences. In order to verify the results of numerical analysis, the hole drilling method (HDM) is performed, to measuring the residual stresses of the test plates in $CO_2$ Flux Cored Arc Welding (FCAW) under various welding conditions. The non-linear transient analysis technique for the numerical analysis in a large and complicate structure is considered. The residual stress of plate in consideration of the welding sequences and directions is evaluated by some numerical simulations and also by experiments. Comparison of numerical analysis results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

배수조건에 따른 압밀 거동의 수치적 분석 (Numerical analysis of Consolidation Behavior under Various Drainage Conditions)

  • 오상호;조완제;윤찬영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile

  • Srivastava, Amit;Sivakumar Babu, G.L.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.169-188
    • /
    • 2011
  • Response of buried flexible pipe-soil system is studied, through numerical analysis, with respect to deflection and buckling in a spatially varying soil media. In numerical modeling procedure, soil parameters are modeled as two-dimensional non-Gaussian homogeneous random field using Cholesky decomposition technique. Numerical analysis is performed using random field theory combined with finite difference numerical code FLAC 5.0 (2D). Monte Carlo simulations are performed to obtain the statistics, i.e., mean and variance of deflection and circumferential (buckling) stresses of buried flexible pipe-soil system in a spatially varying soil media. Results are compared and discussed in the light of available analytical solutions as well as conventional numerical procedures in which soil parameters are considered as uniformly constant. The statistical information obtained from Monte Carlo simulations is further utilized for the reliability analysis of buried flexible pipe-soil system with respect to deflection and buckling. The results of the reliability analysis clearly demonstrate the influence of extent of variation and spatial correlation structure of soil parameters on the performance assessment of buried flexible pipe-soil systems, which is not well captured in conventional procedures.

간이 해석 기법을 이용한 FPSO 충돌 해석 (FPSO Collision Analysis Using a Simplified Analytical Technique)

  • 한상민;이토히사시
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.25-33
    • /
    • 2010
  • Collision between vessels may lead to structural damage and penetration of hulls. The structural damage of a hull may eventually bring about global collapse of the hull girder and outflow of oil, which would contaminate seawater. Therefore, various regulations require the strength of a vessel after collision to satisfy given criteria, and owners usually request collision analyses to confirm the structural safety of their vessels. In the process of designing a vessel to satisfy the collision strength criteria, the strength has been assessed mostly by conducting collision analyses using numerical techniques, such as dynamic, non-linear, finite-element analysis. Design is an inherently iterative process during which many changes are necessary due to the endless needs for reinforcement and modification. Numerical techniques are not adequate for coping with a situation in which collision analysis is frequently required to provide the revised results that reflect the repetitive changes in designs. Numerical techniques require a lot of time and money to conduct in spite of recent improvements in computing power and in the productivity of modeling tools. Therefore, in this paper, an analytical technique is introduced and a collision problem is idealized and simplified using reasonable assumptions based on appropriate background. The technique was applied to an example of an actual FPSO and verified by comparing the results with results from the numerical technique. A good correlation was apparent between the results of the analytical and numerical techniques.

건축물 구획실간 틈새에서의 누설유동에 대한 수치모델 연구 (Study on Numerical Model of Leakage Flow at Gap between Compartments in a Building)

  • 김정엽;김지석
    • 설비공학논문집
    • /
    • 제25권10호
    • /
    • pp.562-567
    • /
    • 2013
  • 1D-numerical analysis of the network algorithm with the orifice equation for the relationship between pressure difference and flowrate has been mostly used to analyse leakage flow at the gap. In this study, a 3D-numerical method applying momentum loss model to the gap region in the computational domain is represented to reflect effectively the effect of leakage flow by determining the proportion of pressure difference to air passage velocity. While the 3D-numerical method is verified through the computation of the two compartments model, the numerical analysis of the stack effect in a building stairway is performed. As the temperature of air outside drops, the pressure in the upper stairway and leakage flowrate through the gap in the door rise. The change of gap area does not have an effect on pressure in the stairway for the analysis conditions.

비정렬 격자계에서 S.I.P. 최적화 방법을 이용한 점성유동 수치해석 (Numerical Analysis of Viscous Flows on Unstructured Grids Using the Optimal Method of Strongly Implicit Procedure)

  • 신영섭
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.196-202
    • /
    • 2012
  • In this study, numerical analysis of viscous flows is carried out based on the unstructured grid. There exist some difficulties in expressing and computing numerical derivatives on the unstructured grid due to lack of the structured characteristics. The general computer algorithms are developed to perform numerical derivatives easily and extended to be applicable to various geometries composed of hybrid meshes. And the optimal method of strongly implicit procedure is newly contrived to accelerate the rate of convergence in solving the pressure Poisson equation. To verify numerical schemes, the driven cavity problems of 2 and 3 dimension are simulated. The numerical results are compared with others and our numerical schemes are shown to be valid.

지오텍스타일 백으로 보강된 철도노반의 정적거동 분석 (Static Behavior of Reinforced Railway Roadbed by Geotextile Bag)

  • 이동현;신은철
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

플립칩 본더용 복사형 히터의 열특성 해석 및 시험 (Numerical and Experimental Investigation of Thermal Behavior of a Radiation Heater for Flip-Chip Bonders)

  • 이상현;곽호상;한창수;류도현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1645-1650
    • /
    • 2003
  • A numerical and experimental study is made of thermal behavior of a hot chuck which is specially designed for flip-chip bonders. The hot chuck consists of radiant heat sources and a heated plate of very high conductivity, which is for achievement of high-speed heat-up. A simplified numerical model is developed to simulate unsteady thermal behavior of the heated plate. Parallel experimental work is also conducted for a prototype of the hot chuck. Based on the experimental data, the numerical model is tuned to improve the reliability and accuracy. Design analysis using the numerical model is conducted. The results of numerical computations illustrate that the radiant heater system adopted in this study satisfies the key design requirements for a high-performance hot chuck.

  • PDF