• Title/Summary/Keyword: Numerical

Search Result 42,450, Processing Time 0.049 seconds

Numerical Study of Contaminant Transport Coupled with Large Strain Consolidation

  • Lee, Jang-Guen
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.45-52
    • /
    • 2008
  • Contaminant transport has been widely studied in rigid porous media, but there are some cases where a large volumetric stain occurs such as dewatering of dredged contaminated sediment, landfill liner, and in-situ capping. This paper presents a numerical investigation of contaminant transport coupled with large strain consolidation. Consolidation test was performed with contaminated sediments collected in Gary, Indiana, U.S. to obtain constitutive relationships, which are required for numerical simulations. Numerical results using CST2 show an excellent agreement with measured settlement and excess pore pressure. CST2 is then used to simulate contaminant transport during and after in-situ capping. Numerical simulations provide that transient advective flows caused by consolidation significantly increase the contaminant transport rate. In addition, the numerical simulations revealed that active capping with Reactive Core Mat (RCM) significantly decelerates consolidation-induced contaminant transport.

Static Behavior of Reinforced Railway Roadbed by Geotextile Bag (지오텍스타일 백으로 보강된 철도노반의 정적거동 분석)

  • Lee, Dong-Hyun;Shin, Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

Computations of Numerical Deviations of Equations for Souring Depth Comparing with 1-D and 2-D Numerical Model (1, 2차원 수치해석에 따른 기존 세굴심 산정식 편차 산정)

  • Choi, Han-Kuy;Park, Tae-Hyun;Lee, Yeong-Seop
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.185-191
    • /
    • 2008
  • This study tried the 1st, 2nd dimensional numerical analysis according to the pier's shape, size and installing method in order to compare the depth of scour calculation method using the variables calculated by using the 2nd dimensional numerical analysis with the calculated depth of scour value by using the calculated variables by using the 1st dimensional numerical analysis. And then verified the problems occurring when the depth of scour is calculated by using the calculated values by using the 1st dimensional numerical analysis, as calculating the deviation depending on it.

  • PDF

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

Numerical and Experimental Investigation of Thermal Behavior of a Radiation Heater for Flip-Chip Bonders (플립칩 본더용 복사형 히터의 열특성 해석 및 시험)

  • Lee, Sang-Hyun;Kwak, Ho-Sang;Han, Chang-Soo;Ryu, Do-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1645-1650
    • /
    • 2003
  • A numerical and experimental study is made of thermal behavior of a hot chuck which is specially designed for flip-chip bonders. The hot chuck consists of radiant heat sources and a heated plate of very high conductivity, which is for achievement of high-speed heat-up. A simplified numerical model is developed to simulate unsteady thermal behavior of the heated plate. Parallel experimental work is also conducted for a prototype of the hot chuck. Based on the experimental data, the numerical model is tuned to improve the reliability and accuracy. Design analysis using the numerical model is conducted. The results of numerical computations illustrate that the radiant heater system adopted in this study satisfies the key design requirements for a high-performance hot chuck.

  • PDF

Application of Numerical Differentiations in Free Vibration Analysis (자유진동 해석에서 수치미분의 응용)

  • 이병구;안대순;강희종;김권식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.814-818
    • /
    • 2003
  • This paper deals with the application of numerical differentiation in free vibration analysis. In the free vibration analysis, the derivative values of the given function are certainly used in calculation of structural parameters. For deriving the derivative values, both the time and labor are needed when the structures consist of non-linear geometries such as arches or curved beams. From this viewpoint, the numerical differentiation scheme is applied into the free vibration analysis. The numerical results obtained from the numerical differentiations are agreed very well with those obtained from the exact derivatives by analytical method. It is expected that the numerical differentiations can be utilized practically in the free vibration analysis.

  • PDF

THE SIMPLICATION OF DYNAMICS FOR THE FLEXIBLE BODY (유연성을 갖는 매니퓰레이터 역학방정식의 간략화)

  • Park, Hwa-Sea;Bae, Jun-Kyung;Nam, Ho-Pub;Park, Chong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.950-953
    • /
    • 1988
  • The equations of motion for linearly elastic bodies undergoing large displacement motion are derived. This produces a set of equations which are efficient to numerically integrate. The equations for the elastic bodies are formulated and simplified to provide as much efficiency as possible in their numerical solution. A futher efficiency is obtained through the use of floating reference frame. The equation are presented in two forms for numerical integration. 1) Explicit numerical integration 2) Implicit numerical integration. In this paper, there was used the numerical integration. The implicit numerical integration is extended to solved second order equation, futher reducing the numerical effort required. The formulation given is seen to be occulate and is expected to be efficient for many types of problems.

  • PDF

Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets (2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구)

  • Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

Numerical Studies of Transient Opposed-Flow Flames using Adaptive Time Integration

  • Im, Hong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.103-112
    • /
    • 2000
  • Numerical simulations of unsteady opposed-flow flames are performed using an adaptive time integration method designed for differential-algebraic systems. The compressibility effect is considered in deriving the system of equations, such that the numerical difficulties associated with a high-index system are alleviated. The numerical method is implemented for systems with detailed chemical mechanisms and transport properties by utilizing the Chemkin software. Two test simulations are performeds hydrogen/air diffusion flames with an oscillatory strain rate and transient ignition of methane against heated air. Both results show that the rapid transient behavior is successfully captured by the numerical method.

  • PDF

A Study on Effects of Failure Behaviour of Tunnel Using A Numerical Analysis (수지해석에 의한 터널의 파괴거동에 미지는 영향분석)

  • 김영민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.309-314
    • /
    • 1999
  • In this paper, an application of finite element procedure fur tunnel failure analysis has been studied. The numerical model is applied to the simulation of a series of plane strain laboratory tests on the small scale model of a shallow tunnel. By comparing experimental and numerical results some conclusions are drawn on the effectiveness of the numerical approach. The findings from these numerical experiments show relative differences in the pattern of failure behaviour for shallow tunnels.

  • PDF