• Title/Summary/Keyword: Number of Void

Search Result 137, Processing Time 0.025 seconds

An effect of component layers on the phases and dielectric properties in $PbTiO_3$ thin films prepared from multilayer structure (다층구조박막으로부터 $PbTiO_3$ 박막 제조시 요소층이 상형성 및 유전특성에 미치는 영향)

  • Do-Won Seo;Song-Min Nam;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.378-387
    • /
    • 1994
  • To improve the properties of $PbTiO_3$ thin films successfully grown by thermal diffusion of 3 component layers of $Ti0_2/Pb/TiO_2(900{\AA}/900{\AA}/900{\AA})$ in preceding research, 3, 5, 7, 9, and 11 multilayer structures $(TiO_2/Pb/.../Tio_2)$ with thinner component layer of $200~300 {\AA}$ thick were deposited on Si substrate by RF sputtering, which were followed by RTA to form $PbTiO_3$ thin films. As a result, $PbTiO_3$ single phase was formed above $500^{\circ}C$. When the thickness of component layer reduced and the number of component layers increased, suppression of Pb-silicate and voids formation resulted in relatively sharp interfaces and the film composition became more homogeneous. Relative dielectric constants in MIM structure were independent of the annealing condition, but they increased with increasing thickness of the $PbTiO_3$ thin films. The maximum breakdown field in MIS structure reached 150kV/cm.

  • PDF

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles (인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구)

  • Yang, Wonjun;Oh, Raegeun;Bae, Ho Seuk;Son, Su-Uk;Kim, Da Sol;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.426-434
    • /
    • 2022
  • Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.

Reliability Studies on Cu/SnAg Double-Bump Flip Chip Assemblies for Fine Pitch Applications (미세피치용 Cu/SnAg 더블 범프 플립칩 어셈블리의 신뢰성에 관한 연구)

  • Son, Ho-Young;Kim, Il-Ho;Lee, Soon-Bok;Jung, Gi-Jo;Park, Byung-Jin;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.37-45
    • /
    • 2008
  • In this study, reliabilities of Cu (60 um)/SnAg (20 um) double-bump flip chip assemblies were investigated for the flip chip interconnections on organic substrates with 100 um pitch. After multiple reflows at $250^{\circ}C\;and\;280^{\circ}C$, bump contact resistances were almost same regardless of number of reflows and reflow temperature. In the high temperature storage test, there was no bump contact resistance change at $125^{\circ}C$ up to 2000 hours. However, bump contact resistances slightly increased at $150^{\circ}C$ due to Kirkendall voids formation. In the electromigration test, Cu/SnAg double-bump flip chip assemblies showed no electromigration until about 600 hours due to reduced local current density. Finally, in the thermal cycling test, thermal cycling failure mainly occurred at Si chip/Cu column interface which was found out the highest stress concentration site in the finite element analysis. As a result, Al pad was displaced out under thermal cycling. This failure mode was caused by normal compressive strain acting Cu column bumps along perpendicular direction of a Si chip.

  • PDF

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

Electromigration Behaviors of Lead-free SnAgCu Solder Lines (SnAgCu 솔더 라인의 Electromigration특성 분석)

  • Ko Min-Gu;Yoon Min-Seung;Kim Bit-Na;Joo Young-Chang;Kim Oh-Han;Park Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.307-313
    • /
    • 2005
  • Electromigration behavior in the Sn96.5Ag3.0Cu0.5 solder lines was investigated and compared Sn96.5Ag3.0Cu0.5 with eutectic SnPb. Measurements were made for relevant parameters for electromigration of the solder, such as drift velocity, threshold current density, activation energy, as well as the product of diffusivity and effective charge number (DZ$\ast$). The threshold current density were measured to be $2.38{\times}10^4A/cm^2$ at $140^{\circ}C$ and the value represented the maximum current density which the SnAgCu solder can carry without electromigration damage at the stressing temperatures. The electromigration energy was measured to 0.56 eV in the temperature range of $110-160^{\circ}C$. The measured products of diffusivity and the effective charge number, DZ$\ast$ were $3.12{\times}10^{-10} cm^2/s$ at $110^{\circ}C$, $4.66{\times}10^{-10} cm^2/s$ at $125^{\circ}C$, $8.76{\times}10^{-10} cm^2/s$ at $140^{\circ}C$, $2.14{\times}10^{-9}cm^2/s$ at $160^{\circ}C$ SnPb solder existed incubation stage, while SnAgCu did not have incubation stage. It was thought that the diffusion mechanism of SnAgCu was different from that of SnPb.

  • PDF

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

Evaluation of Characteristics of Re-liquefaction Resistance in Saturated Sand Deposits Using 1-g Shaking Table Test (1-g 진동대시험을 이용한 포화된 모래지반의 재액상화 강도 특성 평가)

  • Ha Ik-Soo;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • Many case histories of re-liquefaction phenomena seem to support the idea that sand deposits, if they once have been liquefied, could be reliquefied again by a subsequent earthquake even though the earthquake is smaller than the previous one. The magnitude of the strains induced in the initial liquefaction has a significant influence on the resistance of the sample to re-liquefaction. The deposits undergoing liquefaction experience large shear strain during liquefaction. And this previous strain changes the microstructure into highly anisotropic structure such as columnlike structure and connected voids. This type of anisotropy is so unstable that it can reduce re-liquefaction resistance. It is blown that the extent of anisotropic structural change depends on the gradation characteristics of ground. The purpose of this study is to estimate the correlation between the gradation characteristics of the sand and the ratio of re-liquefaction resistance to liquefaction resistance. In this study, 1-g shaking table tests were carried out on five different kinds of sands. During the tests the values of excess pore pressure at various depths and surface settlements were measured. Re-liquefaction resistances were not affected by the initial void ratio and the effective confining pressures, and the deposits of all test sands which had once been liquefied were reliquefied in the cyclic loading number below 1 to 1.5. The ratio of re-liquefaction resistance to liquefaction resistance linearly decreased as $D_{10}/C_u$ increased, and was constant as about 0.2 above the value of $D_{10}/C_u$, 0.15 mm.