• Title/Summary/Keyword: Number of Users

Search Result 3,054, Processing Time 0.033 seconds

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

A Study of Knowledge, Attitude, and Practice Relative to Maternal and Child Health Among Women Residing in Apartments at Yonsei Community Health Area (연세지역 아파트 주민의 모자보건에 관한 실태조사)

  • Yu, Seung-Hum;Chung, Young-Sook;Lee, Kyung-Ja;Kim, Kwang-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.4 no.1
    • /
    • pp.77-87
    • /
    • 1971
  • A study of the knowledge, attitude and practices about the maternal and child health of 305 married women residing in apartments at the Yonsei Community Health area was conducted during the period from November to December 1970 using designed questionnaire with well trained interviewers. The results and findings obtained from the study are summarized as follows: A. Pregnancy and Birth Questions were asked about their last child. 1. 16.4% of the women were pregnant. 2. Among 281 women who had experienced delivery, 48.0% were assisted by doctor or midwisves for their last delivery, while the rest of women delivered their last baby at home without any professional's assistance. The higher the level of education or the greater exposure to mass communication, the more the deliveries were assisted by doctors or midwives. Those women who were born and raised in cities had more deliveries assisted by doctors and midwives than those who were not. 3. Kinds of delivery sheets used. Among 141 cases of home delivery 68% used cement bag paper or vinyl sheets. Three% used nothing and remained used unsterile materials. 4. Among 141 cases of home delivery, 70.2% used scissors. The rest of them used other methods. 5. 47.3% of the women had a rest for one month or more after birth. The higher the level of education, the longer the period of rest was observed. 6. 52.4% of the women fed the colostrum to their babies. This was not related to the mother's education. 7 About half(42.9%) of the women had poor knowledge about a proper diet for the pre and post natal period. B. Child Health 1. Knowledge and practice regarding to the immunization for their children: Most of the women (93.2%) could name at least one kind of immunization. 20.3% could name 6 kinds of immunization. Mothers education level did not influence their ability to name immunizations. 85.2% of children had been immunized at least once. 2. Morbidity of last born children: 48.1% of their last born children were found to have been sick during the last year. Less than half(41.5%) of the sick children were seen by doctor. 3. Counselling at well baby clinic: Most of the women(76.5%) had no counselling for their children. Registration rate at the well baby clinic at the Severance Hospital was 13.2%. 45.9% wanted to visit to the well baby clinic at the Severance Hospital. 4. Weaning Period: 44.6% said that the beginning of the weaning for their last born children was from 6 months to twelve months of age. The most important reason of weaning was the health of both mothers and children. 5. Knowledge and Practice regarding birth and death Registration: 64.6% of the women could name correctly the Ku-office as the place for the registration. Only 29.2% registered the birth of their last born children within 14 days. C. Knowledge, Attitude and Practice regarding to family planning Most: of the women accepted the idea of family planning. 97.7% could name at least one contraceptive method. 35.4% were found to be current users of contraceptive methods. The ideal number of children was 3.1 in average.

  • PDF

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

An Exploratory Study on the Components of Visual Merchandising of Internet Shopping Mall (인터넷쇼핑몰의 VMD 구성요인에 대한 탐색적 연구)

  • Kim, Kwang-Seok;Shin, Jong-Kuk;Koo, Dong-Mo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.19-45
    • /
    • 2008
  • This study is to empirically examine the primary dimensions of visual merchandising (VMD) of internet shopping mall, namely store design, merchandise, and merchandising cues, to be a attractive virtual store to the shoppers. The authors reviewed the literature related to the major components of VMD from the perspective of the AIDA model, which has been mainly applied to the offline store settings. The major purposes of the study are as follows; first, tries to derive the variables related with the components of visual merchandising through reviewing the existing literatures, establish the hypotheses, and test it empirically. Second, examines the relationships between the components of VMD and the attitude toward the VMD, however, putting more emphasis on finding out the component structure of the VMD. VMD needs to be examined with the perspective that an online shopping mall is a virtual self-service or clerkless store, which could reduce the number of employees, help the shoppers search, evaluate and purchase for themselves, and to be explored in terms of the in-store persuasion processes of customers. This study reviewed the literatures related to store design, merchandise, and merchandising cues which might be relevant to the store, product, and promotion respectively. VMD is a total communication tool, and AIDA model could explain the in-store consumer behavior of online shopping. Store design has to do with triggering a consumer attention to the online mall, merchandise with a product related interest, and merchandising cues with promotions such as recommendation and links that induce the desire to pruchase. These three steps might be seen as the processes for purchase actions. The theoretical rationale for the relationship between VMD and AIDA could be found in Tyagi(2005) that the three steps of consumer-oriented merchandising are a store, a product assortment, and placement, in Omar(1999) that three types of interior display are a architectural design display, commodity display, and point-of-sales(POS) display, and in Davies and Ward(2005) that the retail store interior image is related to an atmosphere, merchandise, and in-store promotion. Lee et al(2000) suggested as the web merchandising components a merchandising cues, a shopping metaphor which is an assistant tool for search, a store design, a layout(web design), and a product assortment. The store design which includes differentiation, simplicity and navigation is supposed to be related to the attention to the virtual store. Second, the merchandise dimensions comprising product assortments, visual information and product reputation have to do with the interest in the product offerings. Finally, the merchandising cues that refer to merchandiser(MD)'s recommendation of products and providing the hyperlinks to relevant goods for the shopper is concerned with attempt to induce the desire to purchase. The questionnaire survey was carried out to collect the data about the consumers who would shop at internet shopping malls frequently. To select the subject malls, the mall ranking data announced by a mall rating agency was used to differentiate the most popular and least popular five mall each. The subjects was instructed to answer the questions after navigating the designated mall for five minutes. The 300 questionnaire was distributed to the consumers, 166 samples were used in the final analysis. The empirical testing focused on identifying and confirming the dimensionality of VMD and its subdimensions using a structural equation modeling method. The confirmatory factor analysis for the endogeneous and exogeneous variables was carried out in four parts. The second-order factor analysis was done for a store design, a merchandise, and a merchandising cues, and first-order confirmatory factor analysis for the attitude toward the VMD. The model test results shows that the chi-square value of structural equation is 144.39(d.f 49), significant at 0.01 level which means the proposed model was rejected. But, judging from the ratio of chi-square value vs. degree of freedom, the ratio was 2.94 which smaller than an acceptable level of 3.0, RMR is 0.087 which is higher than a generally acceptable level of 0.08. GFI and AGFI is turned out to be 0.90 and 0.84 respectively. Both NFI and NNFI is 0.94, and CFI 0.95. The major test results are as follows; first, the second-order factor analysis and structural equational modeling reveals that the differentiation, simplicity and ease of identifying current status of the transaction are confirmed to be subdimensions of store design and to be a significant predictors of the dependent variable. This result implies that when designing an online shopping mall, it is necessary to differentiate visually from other malls to improve the effectiveness of the communications of store design. That is, the differentiated store design raise the contrast stimulus to sensory organs to promote the memory of the store and to have a favorable attitude toward the VMD of a store. The results that navigation which means the easiness of identifying current status of shopping affects the attitude to VMD could be interpreted that the navigating processes via the hyperlinks which is characteristics of an internet shopping is a complex and cognitive process and shoppers are likely to lack the sense of overall structure of the store. Consequently, shoppers are likely to be alost amid shopping not knowing where to go. The orientation tool enhance the accessibility of information to raise the perceptive power about the store environment.(Titus & Everett 1995) Second, the primary dimension of merchandise and its subdimensions was confirmed to be unidimensional respectively, have a construct validity, and nomological validity which the VMD dimensions supposed to have a positive correlation with the dependent variable. The subdimensions of product assortment, brand fame and information provision proved to have a positive effect on the attitude toward the VMD. It could be interpreted that the more plentiful the product and brand assortment of the mall is, the more likely the shoppers to favor it. Brand fame and information provision as well affect the VMD attitude, which means that the more famous the brand, the more likely the shoppers would trust and feel familiar with the mall, and the plentifully and visually presented information could have the shopper have a favorable attitude toward the store VMD. Third, it turned out to be that merchandising cue of product recommendation and hyperlinks affect the VMD attitude. This could be interpreted that recommended products could reduce the uncertainty related with the purchase decision, and the hyperlinks to relevant products would help the shopper save the cognitive effort exerted into the information search and gathering, which could lead to a favorable attitude to the VMD. This study tried to sheds some new light on the VMD of online store by reviewing the variables mentioned to be relevant with offline VMD in the existing literatures, and tried to link the VMD components from the perspective of AIDA model. The effect size of the VMD dimensions on the attitude was in the order of the merchandise, the store design and the merchandising cues.It is said that an internet has an unlimited place for display, however, the virtual store is not unlimited since the consumer has a limited amount of cognitive ability to process the external information and internal memory. Particularly, the shoppers are likely to face some difficulties in decision making on account of too many alternative and information overloads. Therefore, the internet shopping mall manager should take into consideration the cost of information search on the part of the consumer, to establish the optimal product placements and search routes. An efficient store composition would be possible by reducing the psychological burdens and cognitive efforts exerted to information search and alternatives evaluation. The store image is in most part determined by the product category and its brand it deals in. The results of this study support this proposition that the merchandise is most important to the VMD attitude than other components, the manager is required to take a strategic approach to VMD. The internet users are getting more accustomed and more knowledgeable about the internet media and more likely to accept the internet as a shopping channel as the period of time during which they use the internet to shop become longer. The web merchandiser should be aware that the product introduction using a moving pictures and a bulletin board become more important in order to present the interactive product information visually and communicate with customers more actively, therefore leading to making the quantity and quality of product information more rich.

  • PDF

Management and Use of Oral History Archives on Forced Mobilization -Centering on oral history archives collected by the Truth Commission on Forced Mobilization under the Japanese Imperialism Republic of Korea- (강제동원 구술자료의 관리와 활용 -일제강점하강제동원피해진상규명위원회 소장 구술자료를 중심으로-)

  • Kwon, Mi-Hyun
    • The Korean Journal of Archival Studies
    • /
    • no.16
    • /
    • pp.303-339
    • /
    • 2007
  • "The damage incurred from forced mobilization under the Japanese Imperialism" means the life, physical, and property damage suffered by those who were forced to lead a life as soldiers, civilians attached to the military, laborers, and comfort women forcibly mobilized by the Japanese Imperialists during the period between the Manchurian Incident and the Pacific War. Up to the present time, every effort to restore the history on such a compulsory mobilization-borne damage has been made by the damaged parties, bereaved families, civil organizations, and academic circles concerned; as a result, on March 5, 2004, Disclosure act of Forced Mobilization under the Japanese Imperialism[part of it was partially revised on May 17, 2007]was officially established and proclaimed. On the basis of this law, the Truth Commission on Forced Mobilization under the Japanese Imperialism Republic of Korea[Compulsory Mobilization Commission hence after] was launched under the jurisdiction of the Prime Minister on November 10, 2004. Since February 1, 2005, this organ has begun its work with the aim of looking into the real aspects of damage incurred from compulsory mobilization under the Japanese Imperialism, by which making the historical truth open to the world. The major business of this organ is to receive the damage report and investigation of the reported damage[examination of the alleged victims and bereaved families, and decision-making], receipt of the application for the fact-finding & fact finding; fact finding and matters impossible to make judgment; correction of a family register subsequent to the damage judgement; collection & analysis of data concerning compulsory mobilization at home and from abroad and writing up of a report; exhumation of the remains, remains saving, their repatriation, and building project for historical records hall and museum & memorial place, etc. The Truth Commission on Compulsory Mobilization has dug out and collected a variety of records to meet the examination of the damage and fact finding business. As is often the case with other history of damage, the records which had already been made open to the public or have been newly dug out usually have their limits to ascertaining of the diverse historical context involved in compulsory mobilization in their quantity or quality. Of course, there may happen a case where the interested parties' story can fill the vacancy of records or has its foundational value more than its related record itself. The Truth Commission on Compulsory mobilization generated a variety of oral history records through oral interviews with the alleged damage-suffered survivors and puts those data to use for examination business, attempting to make use of those data for public use while managing those on a systematic method. The Truth Commission on compulsory mobilization-possessed oral history archives were generated based on a drastic planning from the beginning of their generation, and induced digital medium-based production of those data while bearing the conveniences of their management and usage in mind from the stage of production. In addition, in order to surpass the limits of the oral history archives produced in the process of the investigating process, this organ conducted several special training sessions for the interviewees and let the interviewees leave their real context in time of their oral testimony in an interview journal. The Truth Commission on compulsory mobilization isn't equipped with an extra records management system for the management of the collected archives. The digital archives are generated through the management system of the real aspects of damage and electronic approval system, and they plays a role in registering and searching the produced, collected, and contributed records. The oral history archives are registered at the digital archive and preserved together with real records. The collected oral history archives are technically classified at the same time of their registration and given a proper number for registration, classification, and keeping. The Truth Commission on compulsory mobilization has continued its publication of oral history archives collection for the positive use of them and is also planning on producing an image-based matters. The oral history archives collected by this organ are produced, managed and used in as positive a way as possible surpassing the limits produced in the process of investigation business and budgetary deficits as well as the absence of records management system, etc. as the form of time-limit structure. The accumulated oral history archives, if a historical records hall and museum should be built as regulated in Disclosure act of forced mobilization, would be more systematically managed and used for the public users.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.