• 제목/요약/키워드: Number concentration

검색결과 3,972건 처리시간 0.034초

황사 시 제주지역 에어로졸의 수농도 특성 (The Characteristics of the Aerosol Number Concentration in Jeju Area During Asian Dust Events)

  • 강창희;허철구
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.347-358
    • /
    • 2013
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan in Jeju Island, which is known as background area in Korea, from March 2010 to February 2011. The obtained results of asian dust events and non-asian dust period have been compared. The results show that the entire averaged aerosol number concentration from APS measurement during asian dust events and non-asian dust period are about 341 particles/$cm^3$ and 240 particles/$cm^3$, respectively. During asian dust events, the number concentration in small size ranges(${\leq}0.4{\mu}m$) are similar to non-asian dust period, however, those in large size ranges(${\geq}0.7{\mu}m$) are very higher than non-asian dust period. The contributions of the size resolved number concentration(23 channel in $0.25{\sim}10.0{\mu}m$) to total number concentration in that range are dramatically decreased with increased particle size. The contributions of smaller size ranges(${\leq}0.4{\mu}m$) during asian dust events are very low compared with non-asian dust period, on the other hand, those of larger size ranges(${\geq}0.4{\mu}m$) are higher than non-asian dust period. The number concentration in each size range are strongly correlated with the concentration in adjacent size range. And the total aerosol number concentration are depended on the number concentration in range of smaller than $0.58{\mu}m$ during non-asian dust period and asian dust events. On the other hand, $PM_{10}$ mass concentration has mainly affected with the number concentration in range of smaller than $1.0{\mu}m$ during non-asian dust period, however, during asian dust events, the mass concentration has mainly affected with the number concentration in range of $0.65{\sim}3.0{\mu}m$.

Investigation of Aerosol Number Concentration at Gosan Site in Jeju, Korea

  • Kang, Chang-Hee;Hu, Chul-Goo
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.23-30
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site in Jeju, Korea, from March 2010 to March 2011. And then the atmospheric aerosol number concentration, the temporal variation and the size distribution of aerosol number concentration have been investigated. The aerosol number concentration varies significantly from 748 particles/$cm^3$ to zero particles/$cm^3$. The average number concentration in small size ranges are very higher than those in large size ranges. The number concentrations in the size range 0.25~0.28 ${\mu}m$, 0.40~0.45 ${\mu}m$ and 2.0~2.5 ${\mu}m$ are about 84 particles/$cm^3$, 2 particles/$cm^3$ and 0.4 particles/$cm^3$, respectively. The number concentrations in range of larger than 7.5 ${\mu}m$ are below 0.001 particles/$cm^3$. The seasonal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. And strong amplitudes of diurnal variations of entire averaged aerosol number concentration are not observed. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The size-fractioned aerosol number concentrations in size range 0.8~4.0 ${\mu}m$ during nighttime are evidently higher than during daytime, but similar levels are appeared in other size range. The seasonal differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable seasonal differences are observed for larger size than 0.7 ${\mu}m$.

대기배경지역 에어로졸의 입경별 수농도 연속 측정 (Continuous Measurements of Size Separated Atmospheric Aerosol Number Concentration in Background Area)

  • 강창희;허철구
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.535-543
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site, which is known as background area in Korea, from January to September 2011. The temporal variation and the size distribution of aerosol number concentration have been investigated. The entire averaged aerosol number concentration in the size range 0.25~32.0 ${\mu}m$ is about 252 particles/$cm^3$. The number concentration in small size ranges(${\leq}0.5{\mu}m$) are very higher than those in large size ranges, such as, the number concentration in range of larger than 6.5 ${\mu}m$ are almost zero particles/$cm^3$. The contributions of the number concentration to PM10 and/or PM2.5 are about 34%, 20.1% and 20.4% in the size range 0.25~0.28 ${\mu}m$, 0.28~0.30 ${\mu}m$ and 0.30~0.35 ${\mu}m$, respectively, however, the contributions are below 1% in range of larger than 0.58 ${\mu}m$. The monthly variations in the number concentration in smaller size range(<1.0 ${\mu}m$) are evidently different from the variations in range of larger than 1.0 ${\mu}m$, but the variations are appeared similar patterns in smaller size range(<1.0 ${\mu}m$), also the variations in range of larger than 1.0 ${\mu}m$ are similar too. The diurnal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The monthly differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable monthly differences are observed for larger size than 0.7 ${\mu}m$.

볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교 (Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method)

  • 이나루;박진우
    • 한국산업보건학회지
    • /
    • 제28권3호
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

APS 3321과 Dust Monitor 1.108을 이용한 입자 크기분포 및 수농도 측정결과 비교 (Comparison of particle size distribution and particle number concentration measured by APS 3321 and Dust Monitor 1.108)

  • 임경수;박현설
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.63-70
    • /
    • 2009
  • The size distribution and number concentration of atmospheric aerosol were measured and compared using APS 3321 and Dust Monitor 1.108. The particle size distribution and number concentration measured by two devices were also compared at a particle generation system of standard PSL and fly ash. The number concentration of atmospheric aerosol measured by APS was higher than that by Dust Monitor in particle size range of less than $3.0{\mu}m$, but there was good accordance between them in particle size range of over $3.0{\mu}m$. In the particle generation system of PSL and fly ash, different measurement results were shown because the particle concentration was higher than that of atmospheric aerosol. The number concentration measured by Dust Monitor was higher than that by APS in most particle size ranges. However, the peak concentration of PSL particles measured by Dust Monitor was lower than that by APS. The difference of the collection efficiency in a scrubber by APS and Dust Monitor measurement was less than 10%, but in the particle size of $1.5{\mu}m$, it was over 20%.

  • PDF

2001년 겨울철 서울 대기 에어로졸의 입경별 수 농도 특성 (Characteristics of Urban Aerosol Number Size Distribution in Seoul during the Winter Season of 2001)

  • 배귀남;김민철;임득용;문길주;백남준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.167-177
    • /
    • 2003
  • The number size distribution of urban aerosols ranging from 0.02 to 20 ${\mu}{\textrm}{m}$ in diameter was measured by using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer spectrometer (APS) at Seoul from November 30,2001 to January 14, 2002. The gaseous species such as CO, NO, NO$_2$, and $O_3$ were also continuously monitored. The daily average concentration of urban aerosols sorted into three groups (0.02~0.1 ${\mu}{\textrm}{m}$, 0.1~1 ${\mu}{\textrm}{m}$ and 1~10 ${\mu}{\textrm}{m}$) and the typical number, surface, and volume distributions of urban aerosols were discussed in this paper. The weekly variation of aerosol concentration was compared with those of gaseous concentrations. relative humidity, and visibility. The results showed that the particle number concentration seemed to increase in the morning and the number concentration of fine particles less than 1 fm in diameter seemed to increase when the concentrations of CO, NO, and NO$_2$ were high. The number concentration of fine particles was relatively high when the relative humidity was greater than 70% during the increasing period of relative humidity. The visibility was weakly correlated with the concentration of aerosols ranging 0.1 to 1 ${\mu}{\textrm}{m}$, and the number size distribution for high visibility episode was apparently different from that for low visibility episode.

회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 - (Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.

광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성 (Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC))

  • 정창훈;조용성;이종태
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석 (Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter)

  • 이현혜;김진영;이승복;배귀남;염성수
    • 한국입자에어로졸학회지
    • /
    • 제6권2호
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

용접 및 연마에서 발생되는 나노입자 특성 평가 : 수농도 및 입경분포 분석 (Characterization of Nanoparticles from Welding and Grinding Processes: Evaluation of Number Concentration and Size Distribution)

  • 김부욱;김현욱
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.184-190
    • /
    • 2012
  • Objectives: This study aimed to characterize the nanoparticles produced by welding and grinding processes. Methods: The number concentrations of particles were mapped to determine the distribution of welding fumes in a workplace atmosphere using a hand-held condensation particle counter. An electrical low-pressure impactor was used for measuring the number concentration and particle size distribution. Results: High number concentrations were found around arc cutting and welding (grinding) processes. In the worker's breathing zone, the mean number concentration was 655,000 particles/cm3 and the count median diameter (CMD) was 84 nm with several multi peak distributions (~20, 70, 300 nm). However, at a distance of 3 m from the welding position, the number concentration decreased to 153,000 particles/cm3 with a 70 nm single peak size distribution. During a grinding process, peaks with high concentrations of nanoparticles were temporarily observed. The mean number concentration was 1,520,000 particles/cm3, and the CMD was 30 nm. Nanoparticles (<100 nm) made up 58% and 92% of the aerosols produced by welding and grinding processes, respectively.