Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.
The SIFT method is well-known for robustness against various image transformations, and is widely used for image retrieval and matching. The SIFT method extracts keypoints using scale space analysis, which is different from conventional keypoint detection methods that depend only on the image space. The SIFT method has also been extended to use higher-order scale space derivatives for increasing the number of keypoints detected. Such detection of additional keypoints detected was shown to provide performance gain in image retrieval experiments. Herein, a sigma based normalization method for keypoint detection is introduced using higher-order scale space derivatives.
Location based services based on positions of moving objects are expanding the business area gradually. The location is included all estimate position of the future as well as the position of the present and the past. Location based routing service is active business application in which the position information of moving objects is applied efficiently. This service includes the trajectory of past positions, the real-time tracing of present position of special moving objects, and the shortest and optimized paths combined with map information. In this paper, we describes the location based routing services is extend in distributed web GIS environment. Web GIS service systems provide the various GIS services of analyzing and displaying the spatial data with friendly user - interface. That is, we propose the efficient architecture and technologies for servicing the location based routing services in distributed web GIS environment. The position of moving objects is acquired by GPS (Global Positioning System) and converted the coordinate of real world by map matching with geometric information. We suppose the swapping method between main memory and storages to access the quite a number of moving objects. And, the result of location based routing services is wrapped the web-styled data format. We design the schema based on the GML. We design these services as components were developed in object-oriented computing environment, and provide the interoperability, language-independent, easy developing environment as well as re - usability.
The final decision of study design in molecular and genetic epidemiology is usually a compromise between the research study aims and a number of logistical and ethical barriers that may limit the feasibility of the study or the interpretation of results. Although biomarker measurements may improve exposure or disease assessments, it is necessary to address the possibility that biomarker measurement inserts additional sources of misclassification and confounding that may lead to inconsistencies across the research literature. Studies targeting multi-causal diseases and investigating gene-environment interactions must not only meet the needs of a traditional epidemiologic study but also the needs of the biomarker investigation. This paper is intended to highlight the major issues that need to be considered when developing an epidemiologic study utilizing biomarkers. These issues covers from molecular and genetic epidemiology (MGE) study designs including cross-sectional, cohort, case-control, clinical trials, nested case-control, and case-only studies to matching the study design to the MGE research goals. This review summarizes logistical barriers and the most common epidemiological study designs most relevant to MGE and describes the strengths and limitations of each approach in the context of common MGE research aims to meet specific MEG objectives.
In this paper, we propose a multi-level block matching algorithm using motion information in blocks. In the proposed algorithm, the block-level is decided by the motion degree in the block before motion searching procedure, and then adequate motion searching performs according to the block-level. This improves computational efficiency by eliminating the unnecessary searching Process in no motion or low motion regions, and brings more accurate estimation results by deepening motion searching Process in high motion regions. Simulation results show that the proposed algorithm brings the lower estimation error about 20% MSE reduction with the fewer blocks pet frame and the operation number was reduced to 56% compared to TSSA and 98% compared to FS -BMA with constant block size.
Purpose - A framework is suggested in this paper which will help crowdfunding platforms to match projects according to expectations of funders, leading to successful campaigns and thus increase the profitability of the crowdfunding platform. Research design, data, and methodology - The paper is theoretical and conceptual in nature which proposes a model for crowdfunding platforms to match expectations of crowds with project fundraisers. Results - Crowdfunding platforms are going through incremental innovations in order to match customer (funders and fundraisers) expectations. Leading crowdfunding platforms like Kickstart holds benchmark for other players in the market but the secret of success lies in matching quality projects with the appropriate funders. Crowdfunding platforms have to securitize the projects and allow only quality projects but also provide a wide range of options for funders. Thus, to manage this trade-off between quality and quantity of options, a framework is proposed. Conclusions - Crowdfunding platforms have to adopt a model which will help them in providing a perfect match between crowds and fundraisers. Each member of the crowd and every project will be assigned a category and rating based on the past records. Securitization of projects will help to entertain only demanded projects which will reduce the number of failing campaigns.
Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
Journal of Broadcast Engineering
/
v.24
no.5
/
pp.765-774
/
2019
In this paper, we propose a point cloud matching algorithm for multiple RGB-D cameras. In general, computer vision is concerned with the problem of precisely estimating camera position. Existing 3D model generation methods require a large number of cameras or expensive 3D cameras. In addition, the conventional method of obtaining the camera external parameters through the two-dimensional image has a large estimation error. In this paper, we propose a method to obtain coordinate transformation parameters with an error within a valid range by using depth image and function optimization method to generate omni-directional three-dimensional model using 8 low-cost RGB-D cameras.
Shape description is an important and fundamental issue in content-based image retrieval (CBIR), and a number of shape description methods have been reported in the literature. For shape description, both global information and local contour variations play important roles. In this paper a new included-angular ternary pattern (IATP) based shape descriptor is proposed for shape image retrieval. For each point on the shape contour, IATP is derived from its neighbor points, and IATP has good properties for shape description. IATP is intrinsically invariant to rotation, translation and scaling. To enhance the description capability, multiscale IATP histogram is presented to describe both local and global information of shape. Then multiscale IATP histogram is combined with included-angular histogram for efficient shape retrieval. In the matching stage, cosine distance is used to measure shape features' similarity. Image retrieval experiments are conducted on the standard MPEG-7 shape database and Swedish leaf database. And the shape image retrieval performance of the proposed method is compared with other shape descriptors using the standard evaluation method. The experimental results of shape retrieval indicate that the proposed method reaches higher precision at the same recall value compared with other description method.
Lee, Joongoo;Cho, Gihyuk;Kim, Kyungmin;Oh, Sang Hoon;Oh, John J.;Son, Edwin J.
The Bulletin of The Korean Astronomical Society
/
v.44
no.1
/
pp.46.2-46.2
/
2019
We propose a deep learning model that can generate a waveform of coalescing binary black holes in merging and ring-down phases in less than one second with a graphics processing unit (GPU) as an approximant of gravitational waveforms. Up to date, numerical relativity has been accepted as the most adequate tool for the accurate prediction of merger phase of waveform, but it is known that it typically requires huge amount of computational costs. We present our method can generate the waveform with ~98% matching to that of the status-of-the-art waveform approximant, effective-one-body model calibrated to numerical relativity simulation and the time for the generation of ~1500 waveforms takes O(1) seconds. The validity of our model is also tested through the recovery of signal-to-noise ratio and the recovery of waveform parameters by injecting the generated waveforms into a public open noise data produced by LIGO. Our model is readily extendable to incorporate additional physics such as higher harmonics modes of the ring-down phase and eccentric encounters, since it only requires sufficient number of training data from numerical relativity simulations.
International Journal of Computer Science & Network Security
/
v.21
no.9
/
pp.31-40
/
2021
The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.