• Title/Summary/Keyword: Null steering

Search Result 16, Processing Time 0.019 seconds

Location and Gain/Phase Calibration Techniques for Array Sensors with known Sources (기준신호원을 이용한 배열센서의 위치, 이득, 위상 보정기법)

  • Yoo, Seong Ki;Lee, Tae Beom;Shin, Ki Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.155-163
    • /
    • 2012
  • The geometrical and electrical errors of array sensors can severely degrade the performance of array sensor system. Various calibration techniques are developed to alleviate this problem. In this paper, two different calibration methods with respect to location, gain and phase of array sensors are presented. One method applies the first-order Taylor series expansion to approximate the true steering vector from the nominal values of array sensors. Then a set of equations is formed by using the null characteristics of the MUSIC spectrum to estimate errors of location, gain and phase of array sensors. Another method estimates these errors based on the data covariance matrix of pilot sources. From the simulations, it is demonstrated that two calibration algorithms calibrated an array system successfully. In addition to that, Fistas and Manikas's algorithm is more robust against noise than Ng and Lie's one when SNR is from 10dB to 50dB.

A Study on Design Optimization for Anti-Jamming GPS Antenna (항 재밍 GPS 안테나 설계 최적화에 관한 연구)

  • Jung, Jin-Woo;Kim, Kyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • In this paper, a design optimization method for anti-jamming GPS antenna is presented. For this purpose, jamming performance analysis criteria and methods are presented. And based on the proposed analysis method, the antenna design elements that can realize the best performance were optimized. The anti-jamming GPS antenna for applying the presented method has a structure in which 7 radiating elements are arranged. Here, six radiating elements were circular arranged, and one element was arranged in the center of the circular arrangement. The optimized antenna design parameter(radius of the circular array) is 0.48 λ. As a result of the simulation, it was confirmed that when the steering angle(theta, phi) of the main lobe was (0°, 0°), the pattern null steering range(based on theta) was 57° to 90°.

High resolution nulling limitations for a multi-beam antenna : A Case Study for Korean Peninsula (다중 빔 안테나를 이용한 한반도지형에서의 국소 지역 재밍 신호 제거 연구)

  • Cheong, Chi-Hyun;Seo, Jong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.904-910
    • /
    • 2016
  • The choice of nulling antenna type to be used for a given specification of user locations usually centers on whether to use a phased array antenna(PAA) or a multiple-beam antenna(MBA) for a satellite payload. This paper considers a MBA to analysis the nulling effect in the Korean peninsula jamming circumstance. First, the nulling performance and characteristics on the region of the earth coverage are confirmed with respect to the case of 7 beams. Then, optimum results are derived and compared to what can be accomplished with a fixed set of beams(the case of 10 and 19 beams are considered) for null steering to reject interference is investigated for a MBA.

A Study on the Beam Steering Error Modification method to Adaptive Array System (적응배열 시스템에서 빔 지향 오차 수정기법에 대한 연구)

  • Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • Wireless channel exists interference by multipath a component. Adaptation array antenna that remove this interference a component forms null point about interference signal and maximizes gains about target signal. If target signal and correlative coherent interference signal are received, there is problem that is removed from arrangement output to target signal. And, adaptation array antenna is shortcoming that is sensitive in directivity error. Therefore, in this paper, introduce each existing algorithm to solve directivity error about coherent interference, and proposed beam forming technique that minimize degree of freedom loss and damage because analyzes the problem and reduces coherent interference and directivity error.

  • PDF

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.

A Study of the RCS Reduction by Pattern Synthesis for Singly Curved Structures (패턴 합성을 통한 단일 곡면 구조에서의 RCS 감소 기술에 관한 연구)

  • Kim, Woojoong;Seo, Hyeong Pil;Kim, Youngsub;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.366-373
    • /
    • 2013
  • This paper discusses the singly curved phased reflector for reduced RCS pattern, which has minimized RCS level at boresight with a null by phase cancelation and the lowered RCS level of main beam by splitting the main beam into multi directions. Considering the reduced level of boresight and main beam compared to the same sized reference PEC, this proposed multi-beam reflector can be adopted in the mono-static radar and the bi-static radar environment. The proposed reflector is a multi-beam reflector, which has different phase distributions at each row for different steering angle. It is designed through an intermediate stage of a single and dual-beam reflector. The behaviors of the designed reflectors are verified through full-wave simulation and experiment. The reflectors are designed in the frequency of 10 GHz and it has a size $240{\times}180mm^2$($8{\times}6\;{\lambda}^2$) with the curvature k=3.3. From the measured results, the proposed reflectors reduce the reflected power by 17 dB at boresight.