• Title/Summary/Keyword: Nucleation and Growth

Search Result 518, Processing Time 0.038 seconds

Surface Structure and X-ray Topography of $NdAl_3(BO_3)_4$ Single Crystals Grown from High Temperature Solution of $BaO-B_2O_3-Nd_2O_3-Al_2O_3$ System ($BaO-B_2O_3-Nd_2O_3-Al_2O_3$계 고온 용액으로부터 성장된 $NdAl_3(BO_3)_4$ 단결정의 표면구조와 X-선 Topography)

  • 정선태;강진기;김정환;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.249-256
    • /
    • 1994
  • By surface structure and X-ray topographic observation, growth mechanism of NAB single crystal grown by TSSG technique using a BaB4O7 flux was studied. Surface structure of grown crystals were investigated by optical microscope. Growth history and crystal defects included within grown crystal were investigated using X-ray topography. The {001} faces were grown by 2-D nucleation growth. As decreasing cooling rate, growth mechanism of {111} and {11} was changed from 2-D nucleation growth to the growth by screw dislocation. Only surface striations developed parallel to a-axis were observed on {010} faces. Growth sector of NAB crystals were divided into {001}, {111}, {010}, {021}, {11}. The inclusion which was usually trapped between {001} faces was investigated.

  • PDF

A Study on the Utilization of Blast Furnace Slag(I) (Grain-Growth of Slag-Glass) (고노슬라그의 이용에 관한 연구(I) (슬라그유리의 결정성장))

  • Rhee, Jhun;Chi, Ung-Up;Han, Ki-Sung;Choi, Sang-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.157-167
    • /
    • 1978
  • The batch compositions and physical properties of slag-ceramics were studied with respect to their formability from the molten state and conditions of nucleation and crystal growth treatment. The selected batch compositions for nucleation and growth studies were slag, 56%; silica sand, 28%; $Na_2O+MgO$, 8% and $TiO_2+$chromite, 8%. The optimum nucleation condition was the temperature of 75$0^{\circ}C$ with 6 hrs. holding time and the optimum growth condition was the temperature 975$^{\circ}C$ with zero holding time. The slag-ceramics prepared under the above conditions showed the best developed microtexture. The grown crystals were identified as diopside with the average grain size of 5.7$\mu\textrm{m}$, and the amount of crystal grown were about 53% by weight. The prepared specimens of slag-ceramics showed the microhardness, 793kg/$\textrm{mm}^2$; MOR, 1,050 kg/$\textrm{cm}^2$ and thermal expansion coefficient, $85{\div}10^{-7}$cm/cm/$^{\circ}C$($25^{\circ}C$~$700^{\circ}C$).

  • PDF

The formation of diamond films on high speed steel with a titanium inter- layer by electron-assisted CVD process (화학증착법에 의한 티타늄 피복된 고속도강에의 다이아몬드 박막 형성)

  • 정연진;이건영;이호진;최진일
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The characteristics of interface layer and the effect of bias voltages on the nucleation density and heteroepitaxial growth of diamond films were studied in the hot filament CVD diamond process. Diamond films were deposited on a high speed steel (SKH-51) substrate by bias-assisted hot filament CVD technique with a titanium interlayer. The bias applied for enhancing the emission of electrons from the filament increased the nucleation density and achieving heteroepitaxial growth of CVD diamond. Diamond films obtained at a gas pressure of 20 torr; a bias voltage of 200 V and a substrate temperature of $700^{\circ}C$. Titanium was a suitable element as an interlayer for the diamond deposition on steel because it has high diffusivity of Fe and C as a carbide forming element.

The Cystallization Behavior of $Li_2O-SiO_2$ Glasses ($Li_2O-SiO_2$ 계 유리의 결정화에 관한 연구)

  • 김득중;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.163-170
    • /
    • 1981
  • The crystallization of $Li_2O-SiO_2$ system glasses and the effect of phase separtion to crystal nucleation were studied. The crystallization temperatures of various glasses were determined by DTA and glasses were nucleation heat treated at the temperatures ranging from 45$0^{\circ}C$ to 5$25^{\circ}C$. These glasses were thengown at $700^{\circ}C$ to observable size in the optical microscope. Crystal nucleation rates of various glasses were obtained by estimating the number of crystals per unit volume. The main crystal phase of these glasses identified by X-ray diffraction was lithium disilicate ($Li_2O$.$2SiO_2$). It was found that the crystal nucleation rate of glass (19.5% $Li_2P$-80.5% $SiO_2$), the nearest composition to lithium disilicate, was higher than other glasses. The opalescence caused by phase separation was observed in the nucleation heat treated glass (16.3% $Li_2O$-83.7% $SiO_2$). The result from nucleation density measurement of this glass indicated that the nucleation was enhanced during early stage of phase separation. The molphologies of crystals in glasses and crystal growth rate at $600^{\circ}C$ were also discussed.

  • PDF

Technological Trend of Crystallization Research for Bioproduct Separation (Bioproduct 분리를 위한 결정화 연구 동향)

  • Kim, Woo-Sik;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.164-176
    • /
    • 2005
  • In bioengineering field, current academic trends and informations on crystallization technology for bioproduct separation were summarized. It is essential for utilizing the crystallization technology to understand the fundamental phenomena of crystallization of crystal nucleation, crystal growth, crystal agglomeration and population balance for the design of crystallizers. In general, the crystal nucleation that the crystalline solids occur from the solution is analyzed by Gibb's free energy change in the aspect of thermodynamics and in the present paper the crystal nucleation models based on the above thermodynamics are summarized by their key characteristics. The crystal growth and agglomeration, which have been studied over 50 years and are essential phenomena for separation technology, are reviewed from their basic concept to most leading edge trend of researches. In the material and population balances for the designs of crystallization separation process, the analysis of crystallizers is summarized. Thereon, the present review paper will academically contribute the understanding the crystallization phenomena and the design of the crystallization separation process.

Effect of argon dilution on diamond nucleation with bias enhancement (바이어스 부가에 따른 다이아몬드 핵생성에서 아르곤 혼합의 효과)

  • 서형기;안사리S.G.;트란란안;신형식
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.132-132
    • /
    • 2002
  • Diamond is well known as the hardest material in nature. It also has other unique bulk physical and mechanical properties, such as very high thermal conductivity and broad optical transparency, which enable a number of new applications now that large areas of diamond can be fabricated by the new diamond plasma chemical vapor deposition (CVD) technologies. A study on the effects of growth kinetics and properties of diamond films obtained by addition of argon (~7 vol. %) into the methane/hydrogen mixture is carried out using HFCVD system. A negative bias was used as a nucleation enhancement method in addition to the argon dilution. The scanning electron microscopy (SEM) image of surface morphology shows well faceted crystallites with a predominance of angular shapes corresponding to <100> and <110> crystalline surfaces. The nucleation density and growth rate with argon dilution is two orders of magnitude higher than without argon deposition. The Raman spectra show a good quality film whereas XPS spectra show existence of only diamond phase.

  • PDF

Nucleation and Growth of Graphite Crystal of Levitation Melted High Purity Fe-C-Si Alloys (Levitation법에 의한 고순도 Fe-C-Si 합금중의 흑연결정의 핵생성 및 성장)

  • Kim, Young-Jig;Shur, Su-Jeong
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.236-244
    • /
    • 1991
  • This paper describes a study of the nucleation and growth of graphite crystal of levitation melted high purity Fe-C-Si alloys with emphasis on hypereutectic composition. Spherulitic graphite was observed to form at high purity alloy and converted to compacted by changing the starting iron from ultra-pure zone refined iron to 99.95 pct electrolitic iron. Residual C-C clusters might be acting as an effective nucleation site for graphite, and sulphur was the element to prevent graphite from nucleating. The graphite morphology changed from compacted to spherulitic as the sulphur content decreased.

  • PDF

Indoor Smog Chamber Study IV : Observations of the Nucleation Burst and Subsequent Condensational Growth of Aerosol Particles During the Photochemical Reaction (실내 스모그 챔버 연구 IV : 광화학 반응에서 입자의 nucleation burst와 응축 성장의 관찰)

  • 김민철;배귀남;이승복;문길주
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.137-138
    • /
    • 2002
  • 입자상 물질은 자연적 또는 인위적인 오염원에 의해 직접 대기로 배출되거나 가스상 물질의 전환 과정을 통해 생성된다. 서울을 비롯한 우리나라 시정(visibility)은 맡은 부분이 가스상 물질의 전환을 통해 생성된 미세 입자에 영향을 받고 있기 때문에 미세 입자의 생성(formation)과 성장(growth) 변화를 연구하는 것은 시정(visibility)의 원인을 밝히는 중요한 과정이라고 할 수 있다. (중략)

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.