• Title/Summary/Keyword: Nucleating Agent

Search Result 53, Processing Time 0.024 seconds

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Studies on Transparently Crystallized Glass -On Li2O-Al2O3-SiO2 Composition- (투명 결정화 유리에 관한 연구 -Li2O-Al2O3-SiO2계 조성에 관하여-)

  • 박용완;김건은;연석주;조중희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 1989
  • Li2O-Al2O3-SiO2 system glasses contained P2O5, TiO2 and ZrO2as the nucleating agents were melted and formed. The glass was subsequently heated first to nucleate and then to grow the crystals. At constant nucleating agent content the base glass compositions were varied and the influences of these variations on the crystallization behaviour were investigated. The study was made by measurement of thermal expansion coefficient, differential thermal analysis, X-ray diffraction analysis, scanning electron microscope observation and transmission measurement of crystallized glass specimen in visible region. It was shown that the content of crystalline phase decreased with increasing SiO2 content as well as decresing Li2O in the base glass compositions. As the result of X-ray diffrection analysis, the major crystal was $\beta$-quartz solid solution. The degree of crystallinity which was calculated using the noncrystalline scattering methods increased in S-shape with increasing heat treatment time. This change was similar to that in thermal expansion coefficient. The transmissions of 5mm thick samples were 80-90% in visible ray region.

  • PDF

An Evaluation of a super-absorbent polymer as the Nucleating Agent for a Capsule-type Ice Storage System (고흡수성고분자가 조핵제로 첨가된 빙축열용 축열재 개발)

  • Choi, Hyung-Joon;Hong, Seong-Ahn;Park, Won-Hoon
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 1990
  • A study was conducted to investigate the feasibility of using a super-absorbent polymer made from a acrylic acid copolymer for a capsule-type ice storage system. In a simple pyrex-tube test, 25% of distilled water samples tested turned out not be frozen at all at $-12^{\circ}C$ and the average supercooling of the samples frozen was $9.8^{\circ}C$. With the addition of 0.5wt% super-absorbent polymer, however, the supercooling of the distilled water was dramatically reduced and more than 35% of samples tested did not show any supercooling. The heat transfer characteristics of a capsule-type ice storage unit was also investigated with a distilled water as the phase-change material. With the addition of 0.5wt% polymer, the supercooling of water was not observed at all and thus an overall heat transfer was enhanced. Based on these results, it was concluded that a super-absorbent polymer is a potential candidate as the nucleating agent for an ice-storage system.

  • PDF

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method (Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화)

  • 조훈성;양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

Ultrasonic Processing of Polymer Foam (고분자 포움의 초음파 가공)

  • 변성광;윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.618-624
    • /
    • 1989
  • Ultrasonically induced bubble formation in thermoplastic matrix was investigated experimentally and theoretically. polystyrene was saturated with nitrogen under the pressure of 0.2 to 3.45 MPa in a pressure chamber, followed by pressure release and ultrasonic bubble nucleation. Zinc stearate was added to polystyrene as the nucleating agent to induce heterogeneous nucleation. Various mixture of low density polyethylene and polyethylene wax was also saturated with the gas. The foamed specimens with or without ultrasonically induced bubble nucleation was modeled by modifying the classical nucleation theory. The rate of ultrasonic nucleation was predicted for homogeneous and heterogeneous nucleation at a conical cavity. This study showed that the heterogeneous and heterogeneous nucleation at a conical cavity. This study showed that the heterogeneous nucleation must be employed for ultrasonic production of bubbles in a viscous fluid and the homogeneous nucleation for ultrasonic production of bubbles in a low viscosity fluid.

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

Properties of Multilayer Glass-Ceramic Dielectrics (다층 글라스세라믹 유전체의 결정화특성에 관한 연구)

  • 이헌수;손명모;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.981-988
    • /
    • 1994
  • Crystallizable glasses with precipitation of celsian were prepared for the purpose of insulating dielectric layers for the devices such as integrated circuit substrates. Crystallization behavior of these glasses were studied by DTA, SEM, XRD analysis and by the measurement of dielectric properties. The base composition of the glass-ceramic consists in weight percent of 30% SiO2, 10% Al2O3, 26% BaO, 10% CaO, 10% ZnO, 8%TiO2 and 6% B2O3. 2-6 wt% Y2O3 were selected as the nucleating agent to promote monoclinic celsian formation. As a result, in barium-rich glasses containing 4~6wt% Y2O3 , monoclinic celsian was developed as major crystalline phase in the temperature range of 850~90$0^{\circ}C$. Also, the dielectric constant and quality factor of these glass-ceramics were about 9 and more than 1000, respectively.

  • PDF

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Rheological characterization of nanoparticle filled polymeric systems

  • Kim, Byoung-Chul;Chae, Dong-Wook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.219-219
    • /
    • 2006
  • This study focuses on the effects of dispersion method of a nanoparticle in a polymer matrix such as melt mixing, solution blending, and in-situ polymerization on the physical properties of the nanocomposites. Introduction of a nanoparticle to a polymer resulted in some unusual physical properties. In some cases the nanoparticle played a role of a nucleating agent, leading to decreasing induction time to crystallization. In addition, the dispersion state of the nanoparticle in the polymer matrix also had a significant influence on the physical properties of the nanocomposites. Hence the method of introducing the nanoparticle to the polymer made contribution to the rheological properties of the nanocomposite systems.

  • PDF