• 제목/요약/키워드: Nucleate Pool Boiling

검색결과 77건 처리시간 0.022초

전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구 (Experimental study on nucleate boiling heat transfer enhancement using an electric field)

  • 권영철;김무환;강인식
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

다상 격자 볼츠만 방법을 이용한 수조 핵비등 직접 수치 모사: 예비 연구 (Direct Numerical Simulation of the Nucleate Pool Boiling Using the Multiphase Lattice Boltzmann Method : Preliminary Study)

  • 유승엽;고성호
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.45-53
    • /
    • 2011
  • Multiphase lattice Boltzmann method (LBM) has been used to simulate the nucleate pool boiling directly. For the phase change model, the thermal model and the Stefan boundary condition were introduced to the isothermal LBM. The phase change model was validated by the bubble growth in a superheated liquid under no gravity. The bubble growth on and departure from a superheated wall has been simulated successfully. The preliminary results showed that the detail process of nucleate pool boiling was in good agreement with the experimental results.

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

열전달 촉진 표면에서 R1234yf의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of R1234yf on Various Enhanced Surfaces)

  • 이요한;강동규;서훈;정동수
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.143-149
    • /
    • 2013
  • In this work, nucleate pool boiling heat transfer coefficients (HTCs) of R134a and R1234yf are measured, on flat plain, 26 fpi low fin, Turbo-B, Turbo-C and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a small square copper plate ($9.53mm{\times}9.53mm$), at heat fluxes from $10kW/m^2$ to $200kW/m^2$, with an interval of $10kW/m^2$. Test results show that nucleate boiling HTCs of all enhanced surfaces are greatly improved, as compared to that of a plain surface. Nucleate pool boiling HTCs of R1234yf are very similar to those of R134a, for the five surfaces tested.

Prediction of Nucleate Pool Boiling Heat Transfer Coefficients of Ternary Refrigerant R407C

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Chung, Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.93-103
    • /
    • 1998
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena of R-32, R-125 and R-134a which are the constituent refrigerants of R407C are also investigated. The nucleate boiling heat transfer coefficients of R407C are less than those of HCFC 22 which have the similar physical and transport properties. In our experimental pressure range, which is similar to the operational pressure of air conditioning system, the deterioration of boiling heat transfer coefficients of mixture refrigerant R407C does not appear for moderate wall superheat region. Since nucleate boiling heat transfer coefficients cannot be obtained from ideal mixing law of mixture, Thome's method was used to predict. To account for the heat flux effect and system pressure in Thome's method, the correcting factor, a(P.L1T), was introduced and obtained from experiments for ternary refrigerant R407C.

  • PDF

핵비등에서 기포의 동특성에 대한 전기장의 효과 (Effects of an Electric Field on the Dynamic Characteristics of Bubbles in Nucleate Boiling)

  • 권영철;장근선;권정태;김무환
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.963-971
    • /
    • 2000
  • In order to investigate the effects of an electric field on EHD(Electro-hydrodynamic) nucleate boiling hat transfer characteristics in a nonuniform electric field under saturated pool boiling, the basic study has been performed experimentally. In the present study, the working fluid is R-113 and the plate-wire electrode system is used to generate a steep electric field gradient. Boiling parameters are investigated by using a high speed camera. The electric field distribution around a wire is obtained to understand the effect of an electric field on bubble departure/movement. The experimental results show EHD effects are much more considerable when the applied voltage increases. Bubbles depart away from the heated wire in radial direction. It is confirmed that the mechanisms of EHD nucleate boiling are closely connected with the dynamic behavior of bubbles. The boiling parameters are significantly changed by the electric field strength. With increasing applied voltages, the bubble size decreases and the nucleation site density, bubble velocity and bubble frequency increase.

  • PDF

전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인 (MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER)

  • 김주한;유승문;박종연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

탄소나노튜브를 적용한 나노유체의 비등 열전달계수 (Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes)

  • 이요한;정동수
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

임계 열유속 근방까지의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficients Upto Critical Heat flux)

  • 박기정;정동수
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.571-580
    • /
    • 2008
  • In this work, pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal smooth square surface of 9.52 mm length. Tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from $10\;kW/m^2$ to critical heat flux of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and by thermocouples in the liquid pool. Test results show that pool boiling HTCs of refrigerants increase as the heat flux and vapor pressure increase. This typical trend is maintained even at high heat fluxes above $200\;kW/m^2$. Zuber's prediction equation for critical heat flux is quite accurate showing a maximum deviation of 21% for all refrigerants tested. For all refrigerant data up to the critical heat flux, Stephan and Abdelsalam's well known correlation underpredicted the data with an average deviation of 21.3% while Cooper's correlation overpredicted the data with an average deviation of 14.2%. On the other hand, Gorenflo's and lung et al.'s correlation showed only 5.8% and 6.4% deviations respectively in the entire nucleate boiling range.

Nucleate Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a

  • Park Ki-Jung;Jung Dong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.399-408
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.