• Title/Summary/Keyword: Nuclease

Search Result 135, Processing Time 0.03 seconds

Secretion of the cloned serratia marcescens nuclease in escherichia coli (Serratia marcescens nuclease의 escherichia coli에서의 분비)

  • 신용철;이상열;김기석
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.297-303
    • /
    • 1990
  • Secretion of Serratia marcescens nuclease by E. coli harboring pNUC4 was investigated. 29.2, 54.2 and 16.6% of total nuclease were observed in culture medium, periplasm, and cytoplasm of E. coli, respectively. To investigate the secretion mechanism of Serratia nuclease by E. coli, secretion kinetics of nuclease was examined in the presences of sodium azide, and energy metabolism inhibitor; procaine, an exoprotein processing inhibitor; and chloramphenicol, a protein synthesis inhibitor. In the presence of sodium azide, periplasmic unclease was gradually decreased and the extracellular nyclease was linearly increased according to the incubation time. Similar results were obtained in presences of procaine and chloramphenicol. From these results, we concluded that two transport processes are involved in nuclease secretion: secretion of nuclease through the inner membrane is occurred by an energy-dependent process and probably requiring precusor processing: secretion of nuclease through outer membrane does not require energy, de novo protein synthesis, and precursor processing.

  • PDF

Molecular Characterization of a Nuclease Gene of Chlorella Virus SS-2

  • Park, Yun-Jung;Jung, Sang-Eun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Sequence analysis of the Chlorella virus SS-2 revealed one putative nuclease gene that is 807 bp long and encodes a 31kDa protein. Multiple sequence alignment analysis reveals the presence of highly conserved PD-(D/E)XK residues in the encoded protein. The gene cloned into an expression vector was expressed as a His-tagged fusion protein in chaperone containing pKJE7 cells. The recombinant protein was purified using a His-Trap chelating HP column and used for functional analysis. Exonuclease activity of the SS-2 nuclease was detected when the DNA substrates, such as linear ssDNA, PCR amplicon, linear dsDNA with 5'-overhang ends, 3'-overhang ends, or blunt ends were used. Covalently closed circular DNA was also degraded by the SS-2 recombinant protein, suggesting that the SS-2 nuclease has an endonuclease activity. Stable activity of SS-2 nuclease was observed between $10^{\circ}C$ and $50^{\circ}C$. The optimum pH concentrations for the SS-2 nuclease were pH 6.0-8.5. Divalent ions inhibited the SS-2 nuclease activity.

Comparison of Endonuclease-Sensitive Sites by T4 Endonuclease V and UvrABC Nuclease Treatments Followed by Formamide or Sodium Hydroxide Denaturation

  • Chang, Yung-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.405-408
    • /
    • 1998
  • Endonuclease-sensitive sites detected by T4 endonuclease V or UvrABC nuclease treatments were compared in the dihydrofolate reductase gene of UV-irradiated Chinese hamster ovary B-11 cells. The number of endonuclease-sensitive sites detected by T4 endonuclease V treatment followed by NaOH denaturation was twice that of formamide denaturation. Repeated treatment of damaged genomic DNA with T4 endonuclease V resulted in no further increase in the number of endonuclease-sensitive sites detected. The numbers of endonuclease-sensitive sites detected by UvrABC nuclease using each denaturation condition were similar. Sequential treatment with the two endonucleases using formamide denaturation resulted in twice the number of endonuclease-sensitive sites detected by treatment of each nuclease alone. Due to a lack of AP endonuclease activity these results suggest the presence of T4 endonuclease V-sensitive sites which could be complemented by alkaline gel separation or by UvrABC nuclease treatment.

  • PDF

Purification of Streptococcal nuclease from Streptococcus sp. (Streptococcus sp.로부터 Streptococcal nuclease의 분리 정제)

  • Oh, Jung-Hwa;Ko, Young-Hwan;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.334-338
    • /
    • 1994
  • Streptococcal nuclease was completely purified by stepwise CM-Sepharose column chromatography from crude extracts isolated from Streptococcus sp. The active enzyme fraction was eluted with the buffer containing 0.2 M NaCl. The purified enzyme showed a homogeneity on SDS PAGE and had a molecular weight of 35,000 daltons. The optimum pH and temperature for the enzyme were 9.0 and $50^{\circ}C$, respectively.

  • PDF

Comparison of Coagulase, Deoxyribonuclease (dnase), and Thermostable Nuclease Tests for Identification of Pathogenic Staphylococcus aureus (병원성(病原性) 포도구균(葡萄球菌)의 동정(同定)을 위한 Coagulase, Deoxyribonuclease (DNase) 및 내열성(耐熱性) Nuclease 생산능(生産能)의 비교(比較))

  • Kim, Jong-Myeon;Song, Hee-Jong;Jeong, Ok-Vong
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.2
    • /
    • pp.99-104
    • /
    • 1981
  • A total of 251 clinical isolates (human origin, 43 strains and bovine udder origin 208 strains) of the Staphylococcus that fermented mannitol aerobically were tested for their ability to produce coagulase, DNase, and thermostable nuclease. Of these, 158 isolates coagulated human or bovine plasma, produced DNase, and thermostable, nuclease and were identified as St. aureous, 146 of which produced a 1+ to 3+ clot. The remaining 12 isolated produced a -clot in citrate treated plasma but produced 1+ to 3+ clot in ethylenedi-aminetetraacetic acid (EDTA) treated plasma. It was found that 7 coagulase positive isolates failed to produced thermostable nuclease. In these organisms, we found out of the clot formation is not by coagulase activity but utilization of citrate, because EDTA treated plasma is not coagulated. Among 93 isolates which did not coagulate citrate-or EDTA treated plasma and thermostable nuclease negative, 28 strains produced DNase were identified as St. epidermidis, and other strains were not identification further. It was found that thermostable nuclese production appears to be a consistent property of St. aureus and the test is easy to perform, is rapid became quite distinct within 2 to 4 hour, and is not influenced by as many factors and variations as the coagulase test.

  • PDF

Molecular Properties of Streptococcal Nuclease Isolated from Streptococcus sp.

  • Song, Kyung-Bin;Lee, Min-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.364-366
    • /
    • 1994
  • Molecular properties of streptococcal nuclease purified from Streptococcus sp. were examined. The purified enzyme was stable in the range of pH 7 to 10 and easily inactivated above $60^{\circ}C$. Atomic spectroscopy analysis indicated that the enzyme contains Ca, Mg, Zn. Circular dichroism study showed 25% $\alpha$ -helix, 15% $\beta$-sheet and 30% $\beta$-tums.

  • PDF

Production of Nuclease Activity in U937 Cells by Phorbol 12-Myristate 13-Acetate and Lipopolysaccharide

  • Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.520-523
    • /
    • 2003
  • The proliferation and differentiation signals of myelogeneous U937 cells are provided by extracellular stimuli, such as lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA). In a DNA-native-polyacrylamide gel assay system, we demonstrated that a particular nuclease activity is expressed in PMA-stimulated U937 cells and secreted into the culture medium. The nuclease activity was induced in U937 cells by LPS treatment, while the secretion of the enzyme was undetected in the culture medium. Therefore, it is likely that the expression and secretion of the particular nuclease in U937 cells are controlled by extracellular stimulations, such as PMA and LPS treatment.

Purification and Cellular Localization of Extracellular Nuclease of Serratia marcescens Expressed in Escherichia coli (대장균에 발현된 Serratia marcescens의 Nuclease의 정제와 세포내 분포)

  • Kim, Woe-Yeon;Lee, Hoon-Sil;Suh, Sook-Jae;Cho, Moo-Je;Lee, Sang-Yeol;Kim, Jae-Won
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • Nuclease was secreted to the environmental media from the Escherichia coli JM107 tranformant harboring the extracellular nuclease gene of Serratia marcescens in the plasmid of pNUC4. Under the growth conditions, the amount of secreted enzyme was increased in parallel with bacterial growth conditions, the amount of secreted enzyme was increased in parallel with bacterial growth. The enzyme was purified using chromatofraphic procedures of Matrex green gel and heparin agarose affinity gel, resulted in 50-fold purification with 15% recovery of the enzyme. The apparent molecular weight of the enzyme was estimated to be 29Kda by sodium dodecylsulfate denaturing gel electrophoresis. Using the purified enzyme, polyclonal antibody was obtained from the rabbit. The specificity of the antibody was confirmed by immunoblotting and immunoprecipitaion. For the investigation of cellular distribution of the enzyme, cells were fractionated into three fractions; cytoplasm, periplasm and extracellular fluid. While more than 80% of the enzymatic activity was detected in the extracellular fluid and periplasm, a little was found in the cytoplasm, indicating that the enzyme was likely to be immediately exported to the membrane for excretion after biosynthesis. These results were confirmed again by immunocytochemistry technique using the antibody.

  • PDF

Effective Family Shuffling Method Using Complementary DNA Fragments Produced by S1 Nuclease

  • Hong, Soon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.2004-2007
    • /
    • 2006
  • An efficient method for the in vitro reassembly of homologous DNA sequences is presented. The proposed method involves obtaining single strands of homologous genes and hybridizing them to obtain partially hybridized heteroduplex DNA; cleaving the single-stranded regions of the heteroduplex DNA using S1 nuclease to generate double-strand DNA fragments; denaturing the double-strand DNA fragments to generate single-strand DNA fragments; conducting a series of polymerase chain reactions (PCR) using the single-strand DNA fragments as internal primers and a mixture of homologous DNA as templates to obtain elongated reassembled DNA; and finally, amplifying the reassembled DNA by a PCR using terminal primers. As a result, DNA reassembly could be achieved between homologous genes with a sequence similarity as low as 78%.