• Title/Summary/Keyword: Nuclear receptor

Search Result 703, Processing Time 0.035 seconds

Expression of Lysophosphatidic Acid Receptor 3 in the Uterine Endometrium of Pigs with Somatic Cell Nuclear Transfer Cloned Conceptuses

  • Seo, Hee-Won;Ka, Hak-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Lysophosphatidic acid (LPA) is a small lipid molecule that plays an important role through LPA receptors (LPARs) in reproductive processes. Our previous study has shown maximal expression of LPAR3 in the uterine endometrium on day (D) 12 of pregnancy in pigs, the period when conceptus secretes various molecules such as estrogen and interleukin-$1{\beta}$ (IL1B) and initiates implantation. We determined that endometrial expression of LPAR3 was increased by conceptus estrogen in the previous study, but the effect of IL1B on LPAR3 expression has not been determined. Thus, in this study we examined whether LPAR3 expression was also affected by IL1B. Endometrial explant cultures from D12 of the estrous cycle showed that levels of endometrial LPAR3 expression did not changed in response to IL1B. We also investigated LPAR3 expression in the uterine endometrium on D12 and D30 of pregnancy from gilts with conceptuses derived from somatic cell nuclear transfer (SCNT). The expression of LPAR3 mRNA was lower in endometria from gilts with conceptuses resulting from SCNT compared with those from gilts with embryos resulting from natural mating on D12 of pregnancy, but it was not different between them on D30 of pregnancy. Our results indicate that estrogen of conceptus origin is responsible for induction of LPAR3 expression during the peri-implantation period and appropriate LPA signaling is impaired in the uterine endometrium with SCNT-derived conceptuses during the implantation period in pigs.

Effect of dietary legumes on bone-specific gene expression in ovariectomized rats

  • Park, Yongsoon;Moon, Hyoun-Jung;Paik, Doo-Jin;Kim, Deog-Yoon
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-${\alpha}$ and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

Inhibitory Effects of Panduratin A on Periodontitis-Induced Inflammation and Osteoclastogenesis through Inhibition of MAPK Pathways In Vitro

  • Kim, Haebom;Kim, Mi-Bo;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • Periodontitis is an inflammatory disease caused by microbial lipopolysaccharide (LPS), destroying gingival tissues and alveolar bone in the periodontium. In the present study, we evaluated the anti-inflammatory and anti-osteoclastic effects of panduratin A, a chalcone compound isolated from Boesenbergia pandurata, in human gingival fibroblast-1 (HGF-1) and RAW 264.7 cells. Treatment of panduratin A to LPS-stimulated HGF-1 significantly reduced the expression of interleukin-$1{\beta}$ and nuclear factor-kappa B (NF-${\kappa}B$), subsequently leading to the inhibition of matrix metalloproteinase-2 (MMP-2) and MMP-8 compared with that in the LPS control ($^{**}p$ < 0.01). These anti-inflammatory responses were mediated by suppressing the mitogen-activated protein kinase (MAPK) signaling and activator protein-1 complex formation pathways. Moreover, receptor activator of NF-${\kappa}B$ ligand (RANKL)-stimulated RAW 264.7 cells treated with panduratin A showed significant inhibition of osteoclastic transcription factors such as nuclear factor of activated T-cells c1 and c-Fos as well as osteoclastic enzymes such as tartrate-resistant acid phosphatase and cathepsin K compared with those in the RANKL control ($^{**}p$ < 0.01). Similar to HGF-1, panduratin A suppressed osteoclastogenesis by controlling MAPK signaling pathways. Taken together, these results suggest that panduratin A could be a potential candidate for development as a natural anti-periodontitis agent.

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Curcumin Attenuates Radiation-Induced Inflammation and Fibrosis in Rat Lungs

  • Cho, Yu Ji;Yi, Chin Ok;Jeon, Byeong Tak;Jeong, Yi Yeong;Kang, Gi Mun;Lee, Jung Eun;Roh, Gu Seob;Lee, Jong Deog
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • A beneficial radioprotective agent has been used to treat the radiation-induced lung injury. This study was performed to investigate whether curcumin, which is known to have anti-inflammatory and antioxidant properties, could ameliorate radiation-induced pulmonary inflammation and fibrosis in irradiated lungs. Rats were given daily doses of intragastric curcumin (200 mg/kg) prior to a single irradiation and for 8 weeks after radiation. Histopathologic findings demonstrated that macrophage accumulation, interstitial edema, alveolar septal thickness, perivascular fibrosis, and collapse in radiation-treated lungs were inhibited by curcumin administration. Radiation-induced transforming growth factor-${\beta}1$ (TGF-${\beta}1$), connective tissue growth factor (CTGF) expression, and collagen accumulation were also inhibited by curcumin. Moreover, western blot analysis revealed that curcumin lowered radiation-induced increases of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), TNF receptor 1 (TNFR1), and cyclooxygenase-2 (COX-2). Curcumin also inhibited the nuclear translocation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) p65 in radiation-treated lungs. These results indicate that long-term curcumin administration may reduce lung inflammation and fibrosis caused by radiation treatment.

Orphan Nuclear Receptor Nurr1 as a Potential Novel Marker for Progression in Human Prostate Cancer

  • Wang, Jian;Yang, Jing;Zou, Ying;Huang, Guo-Liang;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2023-2028
    • /
    • 2013
  • A number of studies have indicated that Nurr1, which belongs to a novel class of orphan nuclear receptors (the NR4A family), is important for carcinogenesis. Here we investigated expression of Nurr1 protein in benign and malignant human prostate tissues and association with clinicopathologic features using immunohistochemical techniques. Moreover, we also investigated the ability of Nurr1 to influence proliferation, migration, invasion and apoptosis of human prostate cancer cells using small interfering RNA silencing. Immunohistochemical analysis revealed that the expression of Nurr1 protein was higher in prostate cancer tissues than in benign prostate tissue (P<0.001), levels being positively correlated with tumor T classification (P = 0.003), N classification (P = 0.017), M classification (P = 0.011) and the Gleason score (P = 0.020) of prostate cancer patients. In vitro, silencing of endogenous Nurr1 attenuated cell proliferation, migration and invasion, and induced apoptosis of prostate cancer cells. These results suggest that Nurr1 may be used as an indicator for prostate cancer progression and be useful for novel potential therapeutic strategies.

Correlations between HER2 Expression and Other Prognostic Factors in Breast Cancer: Inverse Relations with the Ki-67 Index and P53 Status

  • Payandeh, Mehrdad;Shahriari-Ahmadi, Ali;Sadeghi, Masoud;Sadeghi, Edris
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1015-1018
    • /
    • 2016
  • Background: Overexpression or amplification of human epidermal growth factor receptor-2 (HER2) is associated with grade of malignancy and a poor prognosis in breast cancer (BC). The aim of this study was to evaluate of value of HER2 as a prognostic marker, and to analyze associations with common histopathological parameters in BC cases. Materials and Methods: Between of 2007 to 2014, 260 patients with BC referred to Oncology Clinic provided cancer tissue samples which underwent immunohistochemistry (IHC) for markers. ER and PR positivity was defined as ${\geq}10%$ positive tumor cells with nuclear staining. HER2-positive was defined as either HER2 gene amplification by fluorescent in situ hybridization (FISH) or scored as 3+ by IHC. For HER2 (2+), FISH was performed to determine HER2 positivity. Results: The mean age at diagnosis for the patients with HER2-negative was significantly higher than in HER2-positive cases. Also, there were significant correlations between histological grade, nuclear grade, lymph node metastasis, tumor size, ER status, PR status, p53 overexpression and Ki-67 index with HER2 expression. HER2-negative lesions were of higher grade and more likely to be ER-negative, PR-negative, p53-positive, lymph node metastasis, with a tumor size<2cm and also $Ki-67{\geq}20%$ as compared to the HER2-positive group. Conclusions: Contrary to the results of other studies, HER2-positive tumors in our study had a lower Ki-67 index and were p53-positive. Also, Ki-67 proliferation index ${\geq}20%$ in more studies was associated with p53-positive.Therefore, tumors which are HER2-positive and have a Ki-$67{\geq}20%$ had a more aggressive behavior compared to HER2-positive and Ki-67<20% lesions.

Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption (파골세포의 분화와 뼈 흡수에 천남성의 억제 효과)

  • Lee, Myeung-Su;Lee, Chang-Hoon;Park, Kie-In;Kim, Ha-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

  • Lee, Mak-Soon;Shin, Yoonjin;Moon, Sohee;Kim, Seunghae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.317-322
    • /
    • 2016
  • Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-$1{\alpha}$) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-$1{\alpha}$ promoter activity in $C_2C_{12}$ muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-$1{\alpha}$, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-$1{\alpha}$ promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-$1{\alpha}$, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-$1{\alpha}$ promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-$1{\alpha}$ gene expression in $C_2C_{12}$ muscle cells.