• Title/Summary/Keyword: Nuclear power plants (NPPs)

Search Result 319, Processing Time 0.026 seconds

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.

The acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines: An extended theory of planned behavior approach

  • Zachariah John A. Belmonte;Yogi Tri Prasetyo;Omar Paolo Benito;Jui-Hao Liao;Krisna Chandra Susanto;Michael Nayat Young;Satria Fadil Persada;Reny Nadlifatin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3054-3070
    • /
    • 2023
  • Nuclear Power Plants (NPP) are widely utilized around the globe from different base forms as it is one of the most dependable renewable resources that technological advancements have offered. However, different perceptions of the usage of NPPs emerged from different generations. The purpose of this study was to investigate the acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines by utilizing an extended Theory of Planned Behavior (TPB) approach. An online questionnaire which consisted of 31 items was distributed using a purposive sampling approach and 450 respondents of Generation Z voluntarily answered. Structural Equation Modeling (SEM) showed that the knowledge regarding NPP had significant effects on risk perception and benefit perception which subsequently led to subjective norms. In addition, perceived behavioral control and subjective norms had significant effects on behavioral intention which led to nuclear acceptance. Interestingly, the respondents perceived the benefit of NPP as slightly higher than the perceived risk. With these, it was clear that the commissioning Nuclear Power Plant must consider as an alternative source of electric energy in the Philippines. Moreover, this study is one of the first studies that investigated the acceptance of NPP among Generation Z. Lastly, the model could be a basis to strengthen the acceptance strategy of opening NPP among Generation Z, particularly in developing countries.

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Identification and Organization of Task Complexity Factors Based on a Model Combining Task Design Aspects and Complexity Dimensions

  • Ham, Dong-Han
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objective: The purpose of this paper is to introduce a task complexity model combining task design aspects and complexity dimensions and to explain an approach to identifying and organizing task complexity factors based on the model. Background: Task complexity is a critical concept in describing and predicting human performance in complex systems such as nuclear power plants(NPPs). In order to understand the nature of task complexity, task complexity factors need to be identified and organized in a systematic manner. Although several methods have been suggested for identifying and organizing task complexity factors, it is rare to find an analytical approach based on a theoretically sound model. Method: This study regarded a task as a system to be designed. Three levels of design ion, which are functional, behavioral, and structural level of a task, characterize the design aspects of a task. The behavioral aspect is further classified into five cognitive processing activity types(information collection, information analysis, decision and action selection, action implementation, and action feedback). The complexity dimensions describe a task complexity from different perspectives that are size, variety, and order/organization. Combining the design aspects and complexity dimensions of a task, we developed a model from which meaningful task complexity factors can be identified and organized in an analytic way. Results: A model consisting of two facets, each of which is respectively concerned with design aspects and complexity dimensions, were proposed. Additionally, twenty-one task complexity factors were identified and organized based on the model. Conclusion: The model and approach introduced in this paper can be effectively used for examining human performance and human-system interface design issues in NPPs. Application: The model and approach introduced in this paper could be used for several human factors problems, including task allocation and design of information aiding, in NPPs and extended to other types of complex systems such as air traffic control systems as well.

Application of the Two-Dosimeter Algorithm for Effective Dose Evaluations based on ICRP Publication 103 (ICRP 103 방사선방호 체계 하에서 유효선량 평가를 위한 Two-Dosimeter Algorithm의 적용방안)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.154-159
    • /
    • 2011
  • To evaluate the radiation exposure of workers participating in task where high radiation exposure is expected, two-dosimeter is typically provided radiation workers, one on the chest and the other on the back, at Korean nuclear power plants (NPPs). In a previous study, the NCRP (55:50) algorithm was selected as the optimal two-dosimeter algorithm (TDA) with various field tests and this TDA has been applied to all Korean NPPs since 2006. In 2007, the International Commission on Radiological Protection (ICRP) published the new ICRP recommendation, ICRP 103, which provides the revised weighting factors for both radiation and tissues and the new reference phantom. In this study, the applicability of current NCRP (55:50) algorithm at Korean NPPs for ICRP 103 was analyzed. As a result, it was found that the NCRP (55:50) algorithm is still effective to estimate the effective dose of workers under ICRP 103.

Sensitivity Analysis for Using Gas Turbine Generator to Provide Alternate Alternating Current in APR+ (APR+ 대체교류발전기의 가스터빈 적용에 대한 민감도분석)

  • Moon, Ho-Rim;Park, Bhum-Lak;Park, Young-Sheop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.97-102
    • /
    • 2012
  • Alternate alternating current (AAC) is used in nuclear power plants (NPPs) in order to cope with station black outs (SBOs). AAC has been provided using diesel engine drive types in Korea's NPPs. The structure of gas turbine generators (GTGs) is simpler than that of diesel generators (DGs), and GTGs have the advantage of longer maintenance intervals. However, GTG-AAC was not used in NPPs in Korea because of the lack of operation/maintenance experience. The purpose of this paper is to analyze the safety of APR+ considering a diversity of AAC types. This paper analyzes reliability data, mechanical specifications of DGs and GTGs, and the sensitivity of core damage frequency to the ACC type.

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

Suggestion of Risk Assessment Methodology for Decommissioning of Nuclear Power Plant (원자력발전소 해체 위험도 평가 방법론 개발)

  • Park, ByeongIk;Kim, JuYoul;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.95-106
    • /
    • 2019
  • The decommissioning of nuclear power plants should be prepared by quantitative and qualitative risk assessment. Radiological and non-radiological hazards arising during decommissioning activities must be assessed to ensure the safety of decommissioning workers and the public. Decommissioning experiences by U.S. operators have mainly focused on deterministic risk assessment, which is standardized by the U.S. Nuclear Regulatory commission (NRC) and focuses only on the consequences of risk. However, the International Atomic Energy Agency (IAEA) has suggested an alternative to the deterministic approach, called the risk matrix technique. The risk matrix technique considers both the consequence and likelihood of risk. In this study, decommissioning stages, processes, and activities are organized under a work breakdown structure. Potential accidents in the decommissioning process of NPPs are analyzed using the composite risk matrix to assess both radiological and non-radiological hazards. The levels of risk for all potential accidents considered by U.S. NPP operators who have performed decommissioning were estimated based on their consequences and likelihood of events.

A Study on the Food Consumption Rates for Off-site Radiological Dose Assessment around Korean Nuclear Power Plants (국내 원자력발전소 주변 주민의 방사선량 평가를 위한 음식물 섭취율 설정 연구)

  • Lee, Gab-Bock;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.183-196
    • /
    • 2008
  • The internal dose by food consumption mostly accounts for radiological dose of public around nuclear power plants (NPPs). But, food consumption rates applied to off-site dose calculation in Korea which are the result of field investigation around Kori NPP by the KAERI (Korea Atomic Energy Research Institute) in 1988, are not able to reflect the latest dietary characteristics of Korean. The food consumption rates to be used for radiological dose assessment in Korea are based on the maximum individual of US NRC (Nuclear Regulatory Commssion) Regulatory Guide 1.109. However, the representative individual of the critical group is considered in the recent ICRP (International Commission on Radiological Protection) recommendation and European nations' practice. Therefore, the study on the re-establishment of the food consumption rates for individual around nuclear power plant sites in Korea was carried out to reflect on the recent change of the Korean dietary characteristics and to apply the representative individual of critical group to domestic regulations. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. The statistical data such as mean, standard deviation, various percentile values about food consumption rates to be used for the representative individual of the critical group were analyzed by using the raw data of the national food consumption survey in $2001{\sim}2002$. Also, the food consumption rates for maximum individual are re-estimated.