• Title/Summary/Keyword: Nuclear positioning

Search Result 39, Processing Time 0.023 seconds

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Suggestion of Modified Y-View in Supine Position (Supine Position에서 Modified Y-View의 제안)

  • Shin, Seong-Gyu;Baek, Seong-Min;Lee, Hyo-Yeong
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.103-107
    • /
    • 2012
  • This study was performed to design a modified Y-View as an imaging method for the Y-View in supine position for patients who requires Y-View imaging for the diagnosis of shoulder impingement syndrome but having trouble for the positioning of patients complaining of shoulder pain. On the result of comparative analysis of the images obtained by changing the lateral-medio degree of X-ray tube into $35^{\circ}$, $40^{\circ}$, and $45^{\circ}$ while patient is in supine position, $40^{\circ}$ of X-ray tube in lateral-medio direction produced the most valuable image for the diagnosis by best describing the shapes of acromion, clavicle space, and coracoacromial arch. Therefore, patients who have difficulty in Y-View position to obtain Y-View image, modified Y-View can be applied as a useful alternative method. By this study, various applications not only in shoulder impingement syndrome but also in diverse omarthralgia diseases are expected.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.

Comparison of Image Uniformity Due to Position Shifting in COR on Myocardial SPECT (Myocardial SPECT시 COR에서 위치변화에 따른 Image Uniformity 비교)

  • Lim, Hyun-Jin;Kim, Joong-Hyun;Kim, Jae-Il;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • Purpose: It is important to acquire accurate data because the SPECT scan affected by various physical factors. The aim of this study was to compare the uniformity when both centers were matched or mismatched differed from position of heart in COR. Materials and methods: The images were acquired with cylindrical uniform phantom (6.7 cm diameter, 9 cm length) and heart insert phantom using Cardio MD SPECT system (Philips, USA). The phantoms were positioned on COR as well as four different points which were 10 cm above, below, left and right side from the COR. The counts from the both edge of cylindrical uniform phantom and those from the both wall of heart insert phantom were compared by using vertical and horizontal line profile. In addition, the qualitative evaluation was performed with heart insert phantom images and volunteer test. Results: In heart insert phantom study, the differences of counts between COR and 10 cm above, below, left and right point of COR were 1.1, 4.1, 4.9, 2.2 and 0.9% using T-A curve for horizontal view. In case of vertical view of COR 3.9, 21.9, 3.5, 23.9, 14.0% were shown. In cylindrical phantom study, the differences of counts between COR and 10 cm above, below, left and right point of COR were 4.3, 0.3, 3.3, 2.6 and 0.7% using T-A curve for horizontal view. In case of vertical view of COR 2.7, 3.0, 1.0, 0.3, 3.4% were shown. For qualitative evaluation, the images at COR were the most uniform for both of heart insert phantom and volunteer test, whereas other four positions showed somewhat distorted images. Conclusion: It showed the most uniform images when COR is matched with the heart. Therefore, we can expect that distortion which increased or decreased of myocardial perfusion will be prevented by matching the heart and COR when positioning. Furthermore, the accuracy of diagnosis will be improved as well.

  • PDF

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

Usability Evaluation through Gonad Shielding Production of Pediatric Patients by Gender and Age Rating (소아 환자의 성별과 연령별 생식선 차폐체 제작을 통한 유용성 평가)

  • CHOI, Sung-Hyun;PARK, Jung-Eun;Dong, Kyung-Rae;Chung, Woon-Kwan;Ju, Yong-Jin;Yang, Nam-Hee
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Purpose: The gonad shielding is used to minimize the impact of the exposure to gonads when Abdomen, Pevis and Hip X-ray inspections are conducted on radiation impressionable pediatric patients. By the way, the gonad is palpable difficult and impossible to check visually because it's a sensitive area, so tests are conducted with the approximate location of shielding, thereby appearing problems of not shielding gonads accurately. Accordingly, this study produced shields by age and gender of pediatric patients and studied the method of positioning shields with ASIS as a reference point without palpable sensitive areas, and tried to evaluate its usability. Materials and methods: The study surveyed 30 pediatric patients by gender and age, who came and got inspected in Department of Radiology, our hospital from February 2012 to January 2014 and obtained the value of tolerance by measuring the average size of the pelvis using the distance measurement function of Infinitt Piview with the images stored in the PACS and producing shields by age and gender of pediatric patients and specifying the areas at random for the comparative analysis of pre- and post-using. It calculated the technology statistics($mean{\pm}SD$) with the value of tolerance measured the length using SPSS 12.0 statistical program. Results: As for boys, differences in the tolerance range of pre- and post-using shields were 2.69 mm in case of 1 year old, 2.58 mm in 2 years, 2.37 mm in 3 years, 2.815 mm in 4~5 years, 2.043 mm in 7~10 years, and as for girls, 1.92 mm in 1~2 years, 1.75 mm in 3~4 years, 2.52 mm in 5~6 years and 1.93 mm in 7~10. After analyzing the pre- and post-using shields for all of boys and girls, there were statistically significant differences(P<0.050). Conclusions: It is considered that we can minimize the exposure to gonads and get a better video for diagnosis in testing high biological impressionable pediatric, if we use shields correctly with ASIS as a reference point considering its shape and size by age and gender in Abdomen, Pevis and Hip X-ray inspections.