• Title/Summary/Keyword: Nuclear positioning

Search Result 39, Processing Time 0.025 seconds

Nuclear power in jeopardy: The negative relationships between greenhouse gas/fine dust concerns and nuclear power acceptance in South Korea

  • Lee, Jin Won;Roh, Seungkook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3695-3702
    • /
    • 2022
  • South Korea, a country that built a world-class nuclear power infrastructure, shifted to a nuclear phaseout during the previous government's reign. This shift was pursued as part of a larger task of electricity mix reform, and one of the integral motives for such reform is addressing greenhouse gas (GHG) and fine dust problems. Thus, verifying the relationships between the public's concerns about GHG/fine dust and their acceptance of nuclear power generation is essential for designing public communication strategies to revive nuclear power under the ongoing environmental regime. Our analysis using a nationwide survey sample of South Korea (N = 1009, through proportionated quota sampling method) showed that the more people are concerned about GHG and fine dust, the less they accept nuclear power. These relationships held even after controlling for the effect of a third variable-energy-related environmentalism. This finding means that despite past communication efforts positioning nuclear power as a generation source that can mitigate GHG/fine dust emissions and the widely accepted scientific evidence that supports such positioning, nuclear power in Korea is in jeopardy. Our finding provides implications for public communications and fundamental knowledge for research on the determinants of nuclear power acceptance.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Evaluation Methodology of Remote Dismantling Equipment for Reactor Pressure Vessel in Decommissioning Project

  • Hyun, D.J.;Choi, B.S.;Jeong, K.S.;Lee, J.H.;Kim, G.H.;Moon, J.K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • A novel methodology to evaluate remote dismantling equipment for a reactor pressure vessel (RPV) in a decommissioning project is presented in this paper. The remote dismantling equipment, mainly composed of cutting tools and positioning equipment, is absolutely required to cut and handle highly radioactive and large components in nuclear power plants (NPPs); this equipment has a great effect on the overall success of the decommissioning project. Conventional evaluation methods have only focused on cutting technologies or positioning equipment, although remote dismantling equipment cannot achieve its goal without organic interaction between the cutting tools and the positioning equipment. In this paper, the cutting tools and the positioning equipment are evaluated by performance parameters according to their original characteristics, the relationship between the two systems, and common factors. Finally, the remote dismantling equipment used in recent decommissioning projects has been evaluated based on the proposed methodology. The results of this paper are expected to be useful for future decommissioning projects.

Design and Performance Evaluation of Small Size Counting and Imaging Gamma Probe System (소형 계수용 및 영상용 감마프로브 시스템의 설계와 성능평가)

  • Yang, Myo-Geun;Kwark, Cheol-Eun;Sim, yong-Geol;Kim, Hee-Joung;Choi, Yong;Chung, Jung-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.291-299
    • /
    • 1997
  • As a microimaging device detecting gamma rays emitted from small lesions or tumors during operation, the intraoperative surgical probe has been proposed and is now under development. We have designed a multipurpose portable gamma prove system and evaluated the performance both for the absolute counting purpose of residual radioactivities and for the localizing capability of gamma events using the NaI(Tl) crystal and two types of photomultiplier tubes(PMTs). Counting efficiencies in the range of routine clinical use of radiation dose were measured using the assembly of single channel PMTs and 0.5 inch thick NaI(Tl) crystal of 1 inch diameter. The positioning of gamma events for imaging purpose requires the multiple channel PMTs with appropriate positioning electronics. We have designed a simple and reliable positioning circuit based on the concept of modified Anger. In preliminary experiments using the multiple channel PMT of 3 inch diameter and the dim lighth source, we were able to trace and localize the correct position with reduced positioning error by the use of two multiplier/divider chipset and simplified peripherals. The energy resolutions for the counting gamma probe measured as full width at half maximum(FWHM) for Cs-137, F-18, Tc-99m were 12%, 13%, and 36%, respectively. The spatial resolution for the imaging gamma probe measured as FWHM for green LED was 2.9 mm. The results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine. Future studies will include developing collimators, improving interface hardwares, and evaluating the system with clinical data.

  • PDF

Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging (다중 분자 영상을 위한 간편한 동물 특이적 자세 고정틀의 제작)

  • Park, Jeong-Chan;Oh, Ji-Eun;Woo, Seung-Tae;Kwak, Won-Jung;Lee, Jeong-Eun;Kim, Kyeong-Min;An, Gwang-Il;Choi, Tae-Hyun;Cheon, Gi-Jeong;Chang, Young-Min;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae;Yoo, Jeong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.401-409
    • /
    • 2008
  • Purpose: Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. Materials and Methods: The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at $60^{\circ}C$ in oven overnight for hardening. Four sealed pipet tips containing $[^{18}F]FDG$ solution were used as fiduciary markers. After injection of $[^{18}F]FDG$ via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Results: Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Conclusion: Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment.

Axial BP Zoning for the Soluble Boron Free Operation in Medium-Sized PWR

  • Kim, Jong-Chae;Kim, Myung-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.59-64
    • /
    • 1996
  • Feasibility of soluble boron free operation for the medium-sized commercial reactors was investigated. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with gadolinia burnable poison-high Gd enrichment and axial poison zoning. CASMO and NECTA-C code system checked axial offset and peaking factors as fuels burned up. A core with complex axial burnable poison zoning satisfied design goals - small excess reactivity for 18 month cycle. Therefore, critical bank positioning for three control rod banks was sought with ease. A.O. value and Fq value were kept within the safety limit.

  • PDF

Development of Safety Management System Based on Location Determination Technology for Construction Workers in Nuclear Power Plant Construction Project (무선측위 기술을 활용한 원전 건설현장 인원 안전관리 시스템 개발 방안)

  • KIM, WooJoong;Lee, Sang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.239-240
    • /
    • 2016
  • The nuclear power plant construction project is a large-scale project that involved a daily maximum of thousands of workers. many equipment and laborers involved has been required consistently to minimize the need for safety through real-time safety management. But current nuclear power plant construction site is only managed to access of workers and equipments. The purpose of this study is the owner requirements reflects the characteristics of the nuclear power plant construction project integrated safety management system utilizing active RFID and GPS positioning technology.

  • PDF

Development of a position sensitive CsI(Tl) crystal array

  • Shi, Guo-Zhu;Chen, Ruo-Fu;Chen, Kun;Shen, Ai-Hua;Zhang, Xiu-Ling;Chen, Jin-Da;Du, Cheng-Ming;Hu, Zheng-Guo;Fan, Guang-Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.835-840
    • /
    • 2020
  • A position-sensitive CsI(Tl) crystal array coupled with the multi-anode position sensitive photomultiplier tube (PS-PMT), Hamamatsu H8500C, has been developed at the Institute of Modern Physics. An effective, fast, and economical readout circuit based on discretized positioning circuit (DPC) bridge was designed for the 64-channel multi-anode flat panel PSPMT. The horizontal and vertical position resolutions are 0.58 mm and 0.63 mm respectively for the 1.0 × 1.0 × 5.0 ㎣ CsI(Tl) array, and the horizontal and vertical position resolutions are 0.86 mm and 0.80 mm respectively for the 2.0 × 2.0 × 10.0 ㎣ CsI(Tl) array. These results show that the CsI(Tl) crystal array with low cost could be applied in the fields of medical imaging and high-resolution gamma camera.

DEVELOPMENT OF A STEAM GENERATOR TUBE INSPECTION ROBOT WITH A SUPPORTING LEG

  • Shin, Ho-Cheol;Jeong, Kyung-Min;Jung, Seung-Ho;Kim, Seung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.125-134
    • /
    • 2009
  • This paper presents details on a tube inspection robotic system and a positioning method of the robot for a steam generator (SG) in nuclear power plants (NPPs). The robotic system is separated into three parts for easy handling, which reduces the radiation exposure during installation. The system has a supporting leg to increase the rigidity of the robot base. Since there are several thousands of tubes to be inspected inside a SG, it is very important to position the tool of the robot at the right tubes even if the robot base is positioned inaccurately during the installation. In order to obtain absolute accuracy of a position, the robot kinematics was mathematically modeled with the modified DH(Denavit-Hartenberg) model and calibrated on site using tube holes as calibration points. To tune the PID gains of a commercial motor driver systematically, the time delay control (TDC) based gain tuning method was adopted. To verify the performance of the robotic system, experiments on a Framatomes 51B Model type SG mockup were undertaken.

The Development of Underwater Robotic System and Its application to Visual Inspection of Nuclear Reactor Internals (수중로봇 시스템의 개발과 원자로 압력용기 육안검사에의 적용)

  • 조병학;변승현;신창훈;양장범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1327-1330
    • /
    • 2004
  • An underwater robotic system has been developed and applied to visual inspection of reactor vessel internals. The Korea Electric Power Robot for Visual Test (KeproVt) consists of an underwater robot, a vision processor-based measuring unit, a master control station and a servo control station. The robot guided by the control station with the measuring unit can be controlled to have any motion at any position in the reactor vessel with $\pm$1 cm positioning and $\pm$2 degrees heading accuracies with enough precision to inspect reactor internals. A simple and fast installation process is emphasized in the developed system. The developed robotic system was successfully deployed at the Younggwang Nuclear Unit 1 for the visual inspection of reactor internals.

  • PDF