• Title/Summary/Keyword: Nuclear plant

Search Result 4,127, Processing Time 0.036 seconds

Technological Catching-up of Nuclear Power Plant in Korea: The Case of OPR1000

  • Lee, Tae Joon;Lee, Young-Joon
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.1
    • /
    • pp.92-115
    • /
    • 2016
  • This paper presents how Korea succeeded in developing an indigenous nuclear power plant model over fifty years. Long-lasting national R&D for technical progress and the Korean government for managerial process were the two pillars in the build-up of indigenous Nuclear Power Plant (NPP) technological capabilities. The concept of technological capabilities is used to examine its evolutionary process with a qualitative and longitudinal approach. The government had a developing country ambition to formulate a strategic plan for technical self-reliance on nuclear power plant while establishing the country’s institutions and organization structure for the plan. Under the government leadership, it was national R&D that led to the resolution of a good number of technological problems, efficiently, by absorbing imported technologies and effectively adapting them to local circumstances.

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

A Determination and application of a future failure rate for LTAM strategies Development on Nuclear Turbines (원자력터빈의 LTAM 전략개발을 위한 미래고장률 결정 및 적용)

  • Shin, Hye-Young;Yun, Eun-Sub
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2845-2849
    • /
    • 2008
  • Long Term Asset Management(LTAM) means a plan developed by using LCM(Life Cycle Management) process for optimum life cycle management of significant plant assets at each plant across the fleet. As a part of development of LTAM Strategies on nuclear turbines, a method so as to determine the future failure rates for low pressure turbine facilities at a nuclear plant was studied and developed by using both plant specific and industry-wide performance data. INPO's EPIX data were analyzed and some failure rate evaluation values considering preventive maintenance practices were calculated by using EPRI's PM Basis software. As the result, failure rate functions applicable to a priori and a posteriori replacement of low pressure turbines at a nuclear plant were developed and utilized in an assessment of economics of LCM alternatives on the nuclear turbine facilities in the respects of 40-year and 60-year operation bases.

  • PDF

The Development of Full-Scope Replica Type Simulator for PWR Nuclear Power Plants (가압경수로 원자력 발전소의 전범위 복제형 시뮬레이터 개발)

  • 이중근
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1997
  • Designing and constructing a proper simulator for real power plants requires extensive research in human engineering and computer science and integration of different fields of technologies such as system analysis, operational knowledge for nuclear plant, etc. A full scope replica type simulator for nuclear power plant is developed. The simulator has the same feature and operational functions as one in the main control room (MCR) of a reference power plant. The simulator provides the necessary training to recover or reduce damages from accidents that usually are unpredictable. This paper describes the configurations and characteristics for the simulator that is developed for Younggwang Nuclear Power Plant #3,4 which is the basic model of the Korean Nuclear Power Plant. The paper also describes technical aspects of Auto Code Generator that is used for developing the simulator. The successful development of the simulator will contribute to improve safety in operation of nuclear power plants.

  • PDF

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

Design of a Reliable Network for DCS in Nuclear Power Plant (원자력 발전소 분산 제어 시스템을 위한 고신뢰 통신망의 설계)

  • Lee, Sung-Woo;Im, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.588-590
    • /
    • 1997
  • In this paper, a highly reliable communication network for DCS in nuclear power plant is designed. The structure and characteristics of DCS in nuclear power plant is briefly explained. The features needed for a communication network for DCS in nuclear power plant is described. According to the abovo features, the layer structure of the communication network is determined and each layer is designed in detail.

  • PDF

The Mock-Up Test for Applying Rebar Modularization to the Wall of Nuclear Power Plant (원전 벽체구조물의 철근모듈화 적용을 위한 Mock-Up 실험연구)

  • Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.7-8
    • /
    • 2016
  • We are developing the technology for applying the Rebar Modularization Method to the Nuclear Power Plant Structures. To achieve this, we had developed the elementary technology for applying this method to Nuclear Power Plant Structures efficiently and performed the Mock-Up Test by using the developed elementary technology. By analysing this test result, we deduced the problems and found solutions to solve them.

  • PDF

Analysis Model on Risk Factors of RCB Construction in Nuclear Power Plant (원자력 발전 플랜트 RCB 시공의 리스크 요인에 관한 분석 모델)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.212-213
    • /
    • 2014
  • The purpose of this study is to suggest analysis model of RCB construction in nuclear power plant. For the objective, This study drew the risk factors of RCB construction from existing literature. The results of the study proposed analysis model made hierarchy in rebar, form, and concrete work. These will be baseline data for risk management in construction project of nuclear power plant.

  • PDF