• 제목/요약/키워드: Nuclear hydrogen production

검색결과 115건 처리시간 0.027초

SI 수소생산 공정 Section 3 열교환기 설계 (Design of Heat Exchanger for Section 3 of SI Hydrogen Production Process)

  • 김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.19-22
    • /
    • 2017
  • SI process is one of the most advanced thermochemical water splitting cycles enabling mass production of hydrogen without emitting carbon dioxide when coupled to nuclear heat energy. The highest temperature (close to $1000^{\circ}C$) required in SI process is well matched with the outlet temperature of a coolant circulating a high-temperature gas-cooled reactor at around $950^{\circ}C$. In Section 3, some heat exchangers are included to recover heats from process flows at high temperature. In this work, we designed a heat exchanger based on the $1Nm^3/hr$ $H_2$ production capacity using commercial tools for chemical process design.

Uncertainties impact on the major FOMs for severe accidents in CANDU 6 nuclear power plant

  • R.M. Nistor-Vlad;D. Dupleac;G.L. Pavel
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2670-2677
    • /
    • 2023
  • In the nuclear safety studies, a new trend refers to the evaluation of uncertainties as a mandatory component of best-estimate safety analysis which is a modern and technically consistent approach being known as BEPU (Best Estimate Plus Uncertainty). The major objectives of this study consist in performing a study of uncertainties/sensitivities of the major analysis results for a generic CANDU 6 Nuclear Power Plant during Station Blackout (SBO) progression to understand and characterize the sources of uncertainties and their effects on the key figure-of-merits (FOMs) predictions in severe accidents (SA). The FOMs of interest are hydrogen mass generation and event timings such as the first fuel channel failure time, beginning of the core disassembly time, core collapse time and calandria vessel failure time. The outcomes of the study, will allow an improvement of capabilities and expertise to perform uncertainty and sensitivity analysis with severe accident codes for CANDU 6 Nuclear Power Plant.

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari;Ataollah Rabiee;Farshad Faghihi
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.144-155
    • /
    • 2023
  • The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

공정열 및 수소생산을 위한 초고온가스로 열평형 분석 (Heat balance analysis for process heat and hydrogen generation in VHTR)

  • 박소영;허균영;유연재;이상일
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2016
  • 초고온가스로는 열출력 밀도가 낮아 노심용융의 가능성이 낮으며, 냉각재 상실사고 시 수소 발생 등으로 인한 폭발의 위험도 없다. 안전성 측면의 장점과 더불어 냉각재를 초고온으로 만들어 전력생산이외에 산업시설용 공정열로의 응용도 가능하다. 본 논문에서는 초고온가스로를 일차계통으로 하고, 전력 및 공정열 공급이 가능한 이차계통의 개념 설계를 담고 있다. 기존에 NGNP(Next Generation Nuclear Part)에서 제안한 350 MW 열출력 원자로 모델을 기반으로 수소생산 루프와는 별도로 전력생산을 위한 300 MW의 열에너지를 중간열교환기를 통해 이차계통으로 전달하는 참조모델을 개발하고, 이를 열역학적 측면에서 분석하였으며 이차계통 각 지점에서 주요 설계변수에 따른 효율분석과 최적화개념 연구를 수행하였다.

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

APPLICATION OF UNCERTAINTY ANALYSIS TO MAAP4 ANALYSES FOR LEVEL 2 PRA PARAMETER IMPORTANCE DETERMINATION

  • Roberts, Kevin;Sanders, Robert
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.767-790
    • /
    • 2013
  • MAAP4 is a computer code that can simulate the response of a light water reactor power plant during severe accident sequences, including actions taken as part of accident management. The code quantitatively predicts the evolution of a severe accident starting from full power conditions given a set of system faults and initiating events through events such as core melt, reactor vessel failure, and containment failure. Furthermore, models are included in the code to represent the actions that could mitigate the accident by in-vessel cooling, external cooling of the reactor pressure vessel, or cooling the debris in containment. A key element tied to using a code like MAAP4 is an uncertainty analysis. The purpose of this paper is to present a MAAP4 based analysis to examine the sensitivity of a key parameter, in this case hydrogen production, to a set of model parameters that are related to a Level 2 PRA analysis. The Level 2 analysis examines those sequences that result in core melting and subsequent reactor pressure vessel failure and its impact on the containment. This paper identifies individual contributors and MAAP4 model parameters that statistically influence hydrogen production. Hydrogen generation was chosen because of its direct relationship to oxidation. With greater oxidation, more heat is added to the core region and relocation (core slump) should occur faster. This, in theory, would lead to shorter failure times and subsequent "hotter" debris pool on the containment floor.