1 |
J. Serp, M. Allibert, O. Benes, et al., The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319.
DOI
|
2 |
T.H. Becker, T.J. Marrow, R.B. Tait, Damage, crack growth and fracture characteristics of nuclear grade graphite using the Double Torsion technique, J. Nucl. Mater. 414 (2011) 32-43.
DOI
|
3 |
T. Becker, Understanding and Modelling Damage and Fracture in Nuclear Grade Graphite, University of Cape Town, 2011.
|
4 |
KTA-3232, Ceramic Components of Reactor Pressure Vessel (Draft), 1992.
|
5 |
R.J. Price, Statistical study of the strength of near-Isotropic graphite, Gen. Atom. Proj. 3224 (1976).
|
6 |
F. Ho, Modified Weibull Theory for the Strength of Granular Brittle Material, General Atomic company, 1979.
|
7 |
J.E. Brocklehurst, M.I. Darby, Concerning the fracture of graphite under different test conditions, Mater. Sci. Eng. 16 (1974) 91-106.
DOI
|
8 |
J.P. Strizak, The Effect of Volume on the Tensile Strength of Several Nuclear Grade Graphites, Specific Nuclear Reactors & Associated Plants, 1991.
|
9 |
M.P. Hindley, M.N. Mitchell, C. Erasmus, et al., A numerical stress based approach for predicting failure in NBG-18 nuclear graphite components with verification problems, J. Nucl. Mater. 436 (2013) 175-184.
DOI
|
10 |
ASME Boiler and Pressure Vessel Code, SECTION III Rules for Construction of Nuclear Facility Components, HHA-3217 Calculation of Probability of Failure, 2017.
|
11 |
T. Burchell, D.E. III, R. R. Lowden, J. Hunter, C. Hannel, The Fracture Tough of Nuclear Graphite Grades, ORNL/TM-2016/678
|