• 제목/요약/키워드: Nuclear fusion energy

검색결과 166건 처리시간 0.025초

Magnetic Design of the KT-2 Tokamak for "Advanced Tokamak" Studies

  • Lee, Kwang-Won;B. G. Hong;S. R. In;J. M. Han;B. J. Yoon;Kim, S. K.;Lee, Jae-Koo;Kim, Dong-Eon;Y. K. Ra
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 춘계학술발표회논문집(2)
    • /
    • pp.1033-1039
    • /
    • 1995
  • The magnetic system design of the KT-2 tokamak has been performed at KAERI. Design goal has been set to facilitate the so-called "advanced tokamak" studies, which is essential to secure the economy of the tokamak fusion reactors. Design features include a large-aspect-ratio machine configuration, long-pulse operation capability with heavy plasma shaping, hybrid magnetic field control and machine/in-vacuum structures for MHD stability.

  • PDF

원자력 시설 주변 환경 감시를 위한 토양 중 우라늄 동위원소 신속 분석법 확립 (Establishing of a rapid analytical method on uranium isotopic ratios for the environmental monitoring around nuclear facilities)

  • 박지영;임종명;이현우;이완로
    • 분석과학
    • /
    • 제31권3호
    • /
    • pp.134-142
    • /
    • 2018
  • The uranium isotopic ratio in environmental samples around nuclear facilities is important because it reveals information regarding illegal activities or anthropogenic pollution. Determination of uranium isotopes, however, is a challenging task requiring much labor and time because of the complex separation procedures and lengthy process. In this study, a rapid determination method for uranium isotopes in environmental samples was developed using. The sample was completely decomposed using the alkali fusion method. The separation procedure using extraction chromatography (UTEVA) was simplified in a single step without any further removal process for Si and major matrix elements. The established method can be completed within 3 h from sample dissolution to ICP-MS measurement. Most matrix elements and uranium isotopes in the soil samples were well separated and purified. Five types of were used to assess the method's accuracy and precision for a rapid uranium analysis method. The analytical accuracy for all CRM samples ranged from 95.1 % to 97.8 %, and the relative standard deviation was below 3.9 %. From the analytical results, one may draw conclusions that the evaluated method for uranium isotopes using alkali-fusion, the extraction chromatography process, and ICP-MS measurements is fast and fairly reliable owing to its recovering efficiencies. Thus, it is expected that the evaluated method can contribute to the improvement of environmental monitoring ability.

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Carbon-based Materials for Atomic Energy Reactor

  • Sathiyamoorthy, D.;Sur, A.K.
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.36-39
    • /
    • 2003
  • Carbon and carbon-based materials are used in nuclear reactors and there has recently been growing interest to develop graphite and carbon based materials for high temperature nuclear and fusion reactors. Efforts are underway to develop high density carbon materials as well as amorphous isotropic carbon for the application in thermal reactors. There has been research on coated nuclear fuel for high temperature reactor and research and development on coated fuels are now focused on fuel particles with high endurance during normal lifetime of the reactor. Since graphite as a moderator as well as structural material in high temperature reactors is one of the most favored choices, it is now felt to develop high density isotropic graphite with suitable coating for safe application of carbon based materials even in oxidizing or water vapor environment. Carboncarbon composite materials compared to conventional graphite materials are now being looked into as the promising materials for the fusion reactor due their ability to have high thermal conductivity and high thermal shock resistance. This paper deals with the application of carbon materials on various nuclear reactors related issues and addresses the current need for focused research on novel carbon materials for future new generation nuclear reactors.

  • PDF

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M.
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.795-798
    • /
    • 2016
  • Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

포털(Portal) 기반 핵융합에너지 지식관리시스템 설계 (The design of Portal based Knowledge Management Systems for Nuclear Fusion Energy)

  • 박준형;황성하;윤정식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(B)
    • /
    • pp.258-261
    • /
    • 2011
  • 오늘날 에너지를 확보와 관련하여 많은 세계 각국 및 기업에서 다양한 사업과 다양한 실험이 이루어지고 있다. 최근 이와 관련하여 미래의 청정 에너지로 부각되고 있는 핵융합에너지가 관심을 받고 있으며, 국내에서도 많은 연구와 성과가 나타나고 있다. 하지만, 이들 연구성과들을 제대로 관리하여 다른 연구에 재투자할 수 있는 지식관리가 부족한 형편이다. 단순한 지식관리보다는 조직의 비즈니스, 정보, 응용 시스템 및 기반구조에 맞도록 적용하여 적시적소에 이용 가능한 시스템을 구성할 필요가 있다. 따라서 본 연구에서는 핵융합에너지 관련 지식 데이터를 적절하게 관리할 수 있는 개념수준의 포털기반 핵융합 에너지 지식관리시스템의 설계를 제안한다.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

High Power Lasers and Their New Applications

  • Izawa, Yasukazu;Miyanaga, Noriaki;Kawanaka, Junji;Yamakawa, Koichi
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.178-185
    • /
    • 2008
  • Recent progress in high power lasers enables us to access a regime of high-energy-density and/or ultra-strong fields that was not accessible before, opening up a fundamentally new physical domain which includes laboratory astrophysics and laser nuclear physics. In this article, new applications of high-energy and ultra-intense laser will be reviewed.

Design of large-scale sodium thermal-hydraulic integral effect test facility, STELLA-2

  • Lee, Jewhan;Eoh, Jaehyuk;Yoon, Jung;Son, Seok-Kwon;Kim, Hyungmo
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3551-3566
    • /
    • 2022
  • The STELLA program was launched to support the PGSFR development in 2012 and for the 2nd stage, the STELLA-2 facility was designed to investigate the integral effect of safety systems including the comprehensive interaction among PHTS, IHTS and DHRS. In STELLA-2, the long-term transient behavior after accidents can be observed and the overall safety aspect can also be evaluated. In this paper, the basic design concept from engineering basis to specific design is described. The design was aimed to meet similarity criteria and requirements based on various non-dimensional numbers and the result satisfied the key features to explain the reasoning of safety evaluation. The result of this study was used to construct the facility and the experiment is on-going. In general, the final design meets the similarity criteria of the multidimensional physics inside the reactor pool. And also, for the conservation of natural circulation phenomena, the design meets the similarity requirements of geometry and thermo-dynamic behavior.

Zr-5Nb 합금의 부식특성에 미치는 미세조직 영향 (Effect of Microstructure on Corrosion Characteristics of Zr-5Nb Alloy)

  • 김현길;최병권;조해동;박정용;정용환
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.482-488
    • /
    • 2008
  • For a better understanding of the correlation between a corrosion and a microstructure, it is necessary to study a phase transformation with an annealing condition for Zr-Nb alloy. Zr-5wt.%Nb alloy with different phase characteristics was prepared with various annealing conditions. A microstructural study and corrosion test were performed to investigate the effect of a phase such as the phase type, fraction, and size on corrosion. The corrosion behavior of the Zr-5Nb alloy was very sensitive to the annealing condition, which affected the formation of the ${\beta}$-phases (${\beta}$-Nb or ${\beta}$. The corrosion rate of the Zr-5Nb alloy annealed at $500^{\circ}C$ with the formation of the ${\beta}$-Nb phase was lower than that of the Zr-5Nb alloy annealed from 600 to $800^{\circ}C$ with the formation of the ${\beta}$-Zr phase. The highest corrosion rate was observed for the ${\beta}$-quenched Zr-5Nb alloy. After a consideration of the corrosion rate and micro structure of the Zr-5Nb alloy, the corrosion resistance of that alloy was improved due to the formation of a small sized ${\beta}$-Nb phase which could be controlled by the annealing condition.