• 제목/요약/키워드: Nuclear fuel cladding

Search Result 359, Processing Time 0.028 seconds

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Evaluation of Hydride Effect on Fuel Cladding Degradation (피복관 열화거동에 미치는 수소화물 영향 평가)

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Sang-Yoon;Park, Jeong-Yong;Jeong, Yong-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.717-723
    • /
    • 2010
  • The degradation behavior of fuel cladding is a very import concern in nuclear power generation, because the operation of nuclear plants can be limited by fuel cladding degradation. In order to evaluate the hydride effect on failure of zirconium fuel claddings, a ring tensile test for the circumferential direction was carried out at room temperature for claddings having different hydride characteristics such as density and orientation; microstructural evaluation was also performed for those claddings. The circumferential failure of the claddings was promoted by increasing the hydride concentration in the matrix; however, the failure of the claddings was affected by the hydride orientation rather than by the hydride concentration in the matrix. From fracture surface observation, the cladding failure during the ring tensile test was matched with the hydride orientation.

A Study on the Mechanical Properties of Nuclear Fuel Cladding Materials (원자로용 핵연료 피복재의 인장특성에 관한 연구)

  • Bae, Bong-Kook;Song, Chun-Ho;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.231-238
    • /
    • 2003
  • The fuel of light water reactor is used for several years under high temperature and pressure, so it needs to be clad with high corrosion resistance material. The cladding materials must have the characteristics of low absorption of a neutron and high corrosion resistance. Zircaloy-2 in Boiling Water Reactor, Zircaloy-4 in Pressurized Water Reactor have been used as cladding materials and Zirlo has been developed as the material for preventing the corrosion. If the fracture of the cladding tube occurs during operation, it will cause the economic loss to shut down and replace the system. So it is needed to evaluate the integrity of the cladding materials. In this paper, the tensile characteristics of the cladding materials were investigated for the basic research of fracture characteristics. Also the residual stress was analyzed to compare the tube type(original type) specimen and the flattened type specimen.

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

A REVIEW AND INTERPRETATION OF RIA EXPERIMENTS

  • Vitanza, Carlo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.591-602
    • /
    • 2007
  • The results of Reactivity-Initiated Accidents (RIA) experiments have been analysed and the main variables affecting the fuel failure propensity identified. Fuel burn-up aggravates the mechanical loading of the cladding, while corrosion, or better the hydrogen absorbed in the cladding as a consequence of corrosion, may under some conditions make the cladding brittle and more susceptible to failure. Experiments point out that corrosion impairs the fuel resistance for RIA transient occurring at cold conditions, whereas there is no evidence of important embrittlement effects at hot conditions, unless the cladding was degraded by oxide spalling. A fuel failure threshold correlation has been derived and compared with experimental data relevant for BWR and PWR fuel. The correlation can be applied to both cold and hot RIA transients, account taken for the lower ductility at cold conditions and for the different initial enthalpy. It can also be used for non-zero power transients, provided that a term accounting for the start-up power is incorporated. The proposed threshold is easy to use and reproduces the results obtained in the CABRI and NSRR tests in a rather satisfactory manner. The behaviour of advanced PWR alloys and of MOX fuel is discussed in light of the correlation predictions. Finally, a probabilistic approach has been developed in order to account for the small scatter of the failure predictions. This approach completes the RIA failure assessment in that after determining a best estimate failure threshold, a failure probability is inferred based on the spreading of data around the calculated best estimate value.

Probabilistic Estimation of LMR Fuel Cladding Performance Under Transient Conditions

  • Kwon, Hyoung-Mun;Lee, Dong-Uk;Lee, Byung-Oon;Kim, Young ll;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.144-153
    • /
    • 2003
  • The object of this paper is the probabilistic failure analysis on the cladding performance of WPF(Whole Pin Furnace) test fuel pins under transient conditions, and analysis of the KALIMER fuel pin using the preceding analysis. The cumulative damage estimation and Weibull probability estimation of WPF test are performed. The probabilistic method was adapted for these analyses to determine the effective thickness thinning due to eutectic penetration depth. In the results, it is difficult to assume that a brittle layer depth made by eutectic reaction is all of the thickness reduction due to cladding thinning. About 93% cladding thinning of the eutectic penetration depth is favorable as an effective thickness of cladding. And the unreliability of the KALIMER driver fuel pin under the same WPF test condition is lower than that of the WPF pin because of the higher plenum-fuel volume ratio and lower cladding inner radius vs. thickness ratio. KALIMER fuel pin developed from conceptual design has a more stable transient performance for a failure mechanism due to fission gas buildup than the WPF pin.

Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.474-483
    • /
    • 2021
  • To establish the exclusive role of hydrogen on burst behaviour of Zircaloy-4 during loss-of-coolant accident transients, an extensive single-rod burst tests were conducted on both unirradiated as-received and hydrogenated Zircaloy-4 cladding tubes at different heating rates and internal overpressures. The visual observations of cladding tubes during bursting as well as post-burst are presented in detail to understand the effect of hydrogen concentration, heating rate, and internal pressure. Impact of hydrogen on burst parameters-burst stress, burst strain, burst temperature-during loss-of-coolant accident transients are compared and discussed. Rupture at multiple locations for hydrogenated cladding at lower internal pressure and higher heating rate is reported for the very first time. A novel burst criterion accounting hydrogen concentration in nuclear fuel cladding is proposed.

A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding

  • Qiu, Bowen;Wang, Jun;Deng, Yangbin;Wang, Mingjun;Wu, Yingwei;Qiu, S.Z.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • At present, the Department of Energy (DOE) in Unite State are directing the efforts of developing accident tolerant fuel (ATF) technology. As the first barrier of nuclear fuel system, the material selection of fuel rod cladding for ATFs is a basic but very significant issue for the development of this concept. The advanced cladding is attractive for providing much stronger oxidation resistance and better in-pile behavior under sever accident conditions (such as SBO, LOCA) for giving more coping time and, of course, at least an equivalent performance under normal condition. In recent years, many researches on in-plie or out-pile physical properties of some suggested cladding materials have been conducted to solve this material selection problem. Base on published literatures, this paper introduced relevant research backgrounds, objectives, research institutions and their progresses on several main potential claddings include triplex SiC, FeCrAl and MAX phase material Ti3SiC2. The physical properties of these claddings for their application in ATF area are also reviewed in thermohydraulic and mechanical view for better understanding and simulating the behaviors of these new claddings. While most of important data are available from publications, there are still many relevant properties are lacking for the evaluations.