• Title/Summary/Keyword: Nuclear factors

Search Result 1,617, Processing Time 0.027 seconds

A Study on the Motivating Factors for Nuclear Development in the Kim Jong-un Era (2011-2017)

  • Deog-Sung Jung;Yong-Hyun Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.281-285
    • /
    • 2024
  • Within five years of Kim Jong-un's rise to power, North Korea conducted four nuclear tests and launched the Hwasong-15, an intercontinental ballistic missile (ICBM), in 2017, declaring the completion of its nuclear forces. During the period when Kim Jong-un completed nuclear forces to maintain the regime, foreign policy factors of the United States, China, Russia, and South Korea drove North Korea's accelerated nuclear development. The main motivating factors were the hostile policies and external threats as security factors. The completion of nuclear forces is also the result of the interplay of domestic political factors, normative factors, and hereditary factors. North Korea has been developing nuclear weapons and missiles for the survival of its regime. To achieve lasting peace on the Korean Peninsula, a new modus vivendi must be sought. It is necessary to set the ultimate goal of North Korea's complete denuclearization and engage in strategic thinking for a realistic and effective phased approach.

A Quantitative Assessment of Organizational Factors Affecting Safety Using System Dynamics Model

  • Yu Jaekook;Ahn Namsung;Jae Moosung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • The purpose of this study is to develop a system dynamics model for the assessment of the organizational and human factors in a nuclear power plant which contribute to nuclear safety. Previous studies can be classified into two major approaches. One is the engineering approach using tools such as ergonomics and Probability Safety Assessment (PSA). The other is the socio-psychology approach. Both have contributed to find organizational and human factors and to present guidelines to lessen human error in plants. However, since these approaches assume that the relationship among factors is independent they do not explain the interactions among the factors or variables in Nuclear Power Plants. To overcome these restrictions, a system dynamics model, which can show cause and effect relationships among factors and quantify the organizational and human factors, has been developed. Handling variables such as the degree of leadership, the number of employees, and workload in each department, users can simulate various situations in nuclear power plant organization. Through simulation, users can get insights to improve safety in plants and to find managerial tools in both organizational and human factors.

Human and organizational factors for multi-unit probabilistic safety assessment: Identification and characterization for the Korean case

  • Arigi, Awwal Mohammed;Kim, Gangmin;Park, Jooyoung;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.104-115
    • /
    • 2019
  • Since the Fukushima Daiichi accident, there has been an emphasis on the risk resulting from multi-unit accidents. Human reliability analysis (HRA) is one of the important issues in multi-unit probabilistic safety assessment (MUPSA). Hence, there is a need to properly identify all the human and organizational factors relevant to a multi-unit incident scenario in a nuclear power plant (NPP). This study identifies and categorizes the human and organizational factors relevant to a multi-unit incident scenario of NPPs based on a review of relevant literature. These factors are then analyzed to ascertain all possible unit-to-unit interactions that need to be considered in the multi-unit HRA and the pattern of interactions. The human and organizational factors are classified into five categories: organization, work device, task, performance shaping factors, and environmental factors. The identification and classification of these factors will significantly contribute to the development of adequate strategies and guidelines for managing multi-unit accidents. This study is a necessary initial step in developing an effective HRA method for multiple NPP units in a site.

Effects of the Training Transfer Management on the Workers in Nuclear Power Plants

  • Kim, Seonsu;Luo, Meiling;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2014
  • Objective: The aim of this study is to enhance the efficiency of education and training through application and management of 'Transfer of Training' in nuclear power plants. Background: Despite the sophistication and standardization of job-related skills and techniques of workers, accidents/incidents keep taking place due to human errors and unsafe actions and behaviors, which translates into the necessity to review and examine the effectiveness and influence of education and training on the workers of nuclear power plants. Method/Results: This study drew the factors of 'Transfer of Training' through a review on the preceding studies and document research. In addition, through expert examination, this study explored the expected effects and possibility of application when managing the influencing factors of 'Transfer of Training' in nuclear power plants. And lastly, management priority order for nuclear power plants was drawn through an AHP analysis. Conclusion: Among the 'Transfer of Training' factors, the training design factor was the most important. In addition, the design of the training and transfer and goal setting showed a high degree of importance among the influencing factors. Application: The management of 'Transfer of Training' in nuclear power plants enhances the capability of workers and improves the operational integrity of nuclear power plants.

CONSTRUCTION SCHEDULE DELAY RISK ASSESSMENT BY USING COMBINED AHP-RII METHODOLOGY FOR AN INTERNATIONAL NPP PROJECT

  • HOSSEN, MUHAMMED MUFAZZAL;KANG, SUNKOO;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.362-379
    • /
    • 2015
  • In this study, Nuclear Power Plant (NPP) construction schedule delay risk assessment methodology is developed and the construction delay risk is assessed for turnkey international NPP projects. Three levels of delay factors were selected through literature review and discussions with nuclear industry experts. A questionnaire survey was conducted on the basis of an analytic hierarchy process (AHP) and Relative Importance Index (RII) methods and the schedule delay risk is assessed qualitatively and quantitatively by severity and frequency of occurrence of delay factors. This study assigns four main delay factors to the first level: main contractor, utility, regulatory authority, and financial and country factor. The second and the third levels are designed with 12 sub-factors and 32 sub-sub-factors, respectively. This study finds the top five most important sub-sub-factors, which are as follows: policy changes, political instability and public intervention; uncompromising regulatory criteria and licensing documents conflicting with existing regulations; robust design document review procedures; redesign due to errors in design and design changes; and worldwide shortage of qualified and experienced nuclear specific equipment manufacturers. The proposed combined AHP-RII methodology is capable of assessing delay risk effectively and efficiently. Decision makers can apply risk informed decision making to avoid unexpected construction delays of NPPs.

ORGANIZATIONAL CONTRIBUTIONS TO NUCLEAR POWER PLANT SAFETY

  • GHOSH S. TINA;APOSTOLAKIS GEORGE E.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.207-220
    • /
    • 2005
  • Nuclear power plants (NPP) are complex socio-technological systems that rely on the success of both hardware and human components. Empirical studies of plant operating experience show that human errors are important contributors to accidents and incidents, and that organizational factors play an important role in creating contexts for human errors. Current probabilistic safety assessments (PSA) do not explicitly model the systematic contribution of organizational factors to safety. As some countries, like the United States, are moving towards increased use of risk information in the regulation and operation of nuclear facilities, PSA quality has been identified as an area for improvement. The modeling of human errors, and underlying organizational weaknesses at the root of these errors, are important sources of uncertainty in existing PSAs and areas of on-going research. This paper presents a review of research into the following questions: Is there evidence that organizational factors are important to NPP safety? How do organizations contribute to safety in NPP operations? And how can these organizational contributions be captured more explicitly in PSA? We present a few past incidents that illustrate the potential safety implications of organizational deficiencies, some mechanisms by which organizational factors contribute to NPP risk, and some of the methods proposed in the literature for performing root-cause analyses and including organizational factors in PSA.

Examination of different socioeconomic factors that contribute to the public acceptance of nuclear energy

  • Nguyen, Viet Phuong;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.767-772
    • /
    • 2018
  • Public acceptance is a major issue that will determine the future of nuclear energy. In this article, we review relevant studies and identify several common patterns of nuclear public acceptance. Based on these patterns and four categories of factors, we propose hypotheses on the impact of different socioeconomic factors on the public opinion of nuclear energy. These factors were demographic and social influences, politico-economic, energy conditions, and nuclear accidents and natural risks. We tested these hypotheses using a data set including survey results on public opinion of nuclear energy in 59 countries from 1987 to 2014. Results of the regression analysis generally verified the proposed hypotheses, especially regarding the positive impact of education or geological suitability and the negative effect of improved living standards and democracy on nuclear acceptance. We propose policy recommendations, including a better focus on education and communication and a thorough consideration of the social and geological conditions a country needs to make before deciding to go nuclear. Potential weaknesses of this study are also discussed, including the possible causal relation between independent variables and the binary nature of the dependent variable.

-Reliability Assessment of Nuclear Power Plants Considering the Qualitative Factors under Uncertainty- (원자력발전소에서 정성적 요인을 고려한 신뢰성 평가)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.167-177
    • /
    • 2000
  • The problem of system reliability is very important issue in the nuclear power plant, because the failure of its system brings about extravagant economic loss, environment destruction, and quality loss. This paper therefore proposes a normalized scoring model by the qualitative factors order to evaluate the robust reliability of nuclear power plants under uncertainty. Especially, the qualitative factors including risk, functional, human error, and quality function factors for the robust justification has been also introduced. Finally, the analytical reliability and safety assessment model developed in this paper can be used in the real nuclear power plant.

  • PDF

A Study on Annual Atmospheric Dispersion Factors Between Continuous and Purge Releases of Gaseous Radioactive Effluents

  • Kim, Na-Hyun;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • Radioactive materials from nuclear power facilities can be released into the atmosphere through various channels. Recently, the dispersion of radioactive materials has become critical issue in Korea after Kori Unit 1 and Wolsong Unit 1 were permanently shut down. In this study, annual atmospheric dispersion factors were compared based on the continuous release and purge release using the XOQDOQ computer program, a method for calculating atmospheric dispersion factors at commercial nuclear power stations. The meteorological data analyzed in this study was based on the Shin Kori nuclear power meteorological tower which has the largest operating nuclear power plants in Korea, for three years (from 2008 to 2010). The analysis results of the dispersion factor of the radioactive material release obtained using the XOQDOQ program showed that the difference between the continuous release and purge release was within two times. This study will be valuable helpful for revealing the uncertainty of the predictive atmospheric dispersion factor to achieve regulation.