• Title/Summary/Keyword: Nuclear design

Search Result 3,179, Processing Time 0.025 seconds

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

A Standard Way of Constructing a Data Warehouse based on a Neutral Model for Sharing Product Dat of Nuclear Power Plants (원자력 발전소 제품 데이터의 공유를 위한 중립 모델 기반의 데이터 웨어하우스의 구축)

  • Mun, D.H.;Cheon, S.U.;Choi, Y.J.;Han, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2007
  • During the lifecycle of a nuclear power plant many organizations are involved in KOREA. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in KOREA, Dusan Heavy Industries manufactures the main equipment, and a construction company constructs the plant. Even though each organization has a digital data management system inside and obtains a certain level of automation, data sharing among organizations is poor. KHNP gets drawing and technical specifications from KOPEC in the form of paper. It results in manual re-work of definition and there are potential errors in the process. A data warehouse based on a neutral model has been constructed in order to make an information bridge between design and O&M phases. GPM(generic product model), a data model from Hitachi, Japan is addressed and extended in this study. GPM has a similar architecture with ISO 15926 "life cycle data for process plant". The extension is oriented to nuclear power plants. This paper introduces some of implementation results: 1) 2D piping and instrument diagram (P&ID) and 3D CAD model exchanges and their visualization; 2) Interface between GPM-based data warehouse and KHNP ERP system.

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Burnable Absorber Design Study for a Passively-Cooled Molten Salt Fast Reactor

  • Nariratri Nur Aufanni;Eunhyug Lee;Taesuk Oh;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.900-906
    • /
    • 2024
  • The Passively-Cooled Molten Salt Fast Reactor (PMFR) is one of the advanced design concepts of the Molten Salt Fast Reactor (MSFR) which utilizes a natural circulation for the primary loop and aims to attain a long-life operation without any means of fuel reprocessing. For an extended operation period, it is necessary to have enough fissile material, i.e., high excess reactivity, at the onset of operation. Since the PMFR is based on a fast neutron spectrum, direct implementation of a burnable absorber concept for the control of excess reactivity would be ineffective. Therefore, a localized moderator concept that encircles the active core has been envisioned for the PMFR which enables the effective utilization of a burnable absorber to achieve low reactivity swing and long-life operation. The modified PMFR design that incorporates a moderator and burnable absorber is presented, where depletion calculation is performed to estimate the reactor lifetime and reactivity swing to assess the feasibility of the proposed design. All the presented neutronic analysis has been conducted based on the Monte Carlo Serpent2 code with ENDF/B-VII.1 library.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Reactor core design with practical gadolinia burnable absorbers for soluble boron-free operation in the innovative SMR

  • Jin Sun Kim;Tae Sik Jung;Jooil Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3144-3154
    • /
    • 2024
  • The development of soluble boron-free (SBF) operation in the innovative Small Modular Reactor (i-SMR) requires effective strategies for managing excess reactivity over extended operational cycles. This paper introduces a practical approach to reactor core design for SBF operation in i-SMR, emphasizing the use of gadolinia burnable absorbers (BA). The study investigates the feasibility of Highly Intensive and Discrete Gadolinia/Alumina Burnable Absorber (HIGA) rods for controlling excess reactivity sustainably. Through comprehensive analysis and simulations, the reactivity behavior with varying quantities of HIGA rods is examined, leading to the development of optimized fuel assembly designs. Furthermore, the integration of HIGA rods with integral gadolinia BA rods is discussed to enhance reactivity control and operational flexibility further. This approach utilizes the spatial self-shielding effect of gadolinia for extended reactivity management, crucial for stable and efficient reactor performance. The paper thoroughly addresses core design considerations, including fuel assembly configurations and control rod patterns, to ensure safety and performance in initial and reload cycles. This research advances the development of SBF operation in i-SMR by offering practical reactivity management solutions.

Evaluation of the Middle Part of the Nuclear Fuel Cycle

  • Kovac, Michal
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.169-174
    • /
    • 2016
  • This article describes a comprehensive methodology for the evaluation of the middle part of nuclear fuel cycles. Evaluation of fuel cycles is basically divided into two parts. The first comprises nuclear calculation, i.e., creation of the strategy for nuclear fuel reloading and core design calculations. The second part is the business-economic evaluation of the selected reloading strategy, which can be done either by financial analysis or economic analysis. The financial analysis incorporates the perspectives of a company while the economic analysis can be used primarily by national economists or politicians. This methodology was applied to a case study that is focused on impacts of switching from a 12-month to an 18-month fuel cycle strategy for Water-Water Energetic Reactor (VVER)-1000 reactors.

Several Problems in Reactor Coolant System Flow Rate Measurement

  • Ahn, Seung-Hoon;Auh, Geun-Sun;Suh, nam-Cuk;Park, Jun-Sang;Koo, Bon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.592-608
    • /
    • 1998
  • Inspection of RCS flow measurements for the domestic pressurized water reactors has been performed by the Korea Institute of Nuclear Safety (KINS) as one of the authorized periodical inspection activities. The inspection results for the Westinghouse-type plants reveal that 1) the RCS flow instrumentation has been calibrated by using the initial design and commissioning test result, without reflecting the cycle specific reference flow measurements, 2) the loop-to-loop now variation in the actual flow measurement which has not been considered in the safety analysis affects the asymmetric How transient results, and 3) the measured RCS flows in Kori 3 and 4, Yonggwang 1 and 2 do not support the definition of the best estimate RCS flow, approaching the RCS flow limit. In this study, the revealed problems were discussed with review of the design and the RCS flow measurement uncertainty evaluation, and the technical approaches and recommendations for resolving these problems were proposed.

  • PDF