• Title/Summary/Keyword: Nuclear decommissioning

Search Result 340, Processing Time 0.03 seconds

Decommissioning Cost Estimation of Kori Unit 1 Using a Multi-Regression Analysis Model (회귀 분석 모델을 이용한 고리 1호기 해체 비용 추정)

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Moon, Joo Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.247-260
    • /
    • 2020
  • A multi-regression model was developed to estimate the decommissioning cost for Kori unit 1 using foreign nuclear power plant (NPP) decommissioning cost data. First, the decommissioning cost data were collected for 13 boiling water reactors and 16 pressurized water reactors and converted into the values as of November 2019. Then, for the regression model, the decommissioning cost was chosen as the dependent variable, and two variables were selected as independent variables: a contamination factor that was designed to reflect the operational characteristics of the decommissioned NPP and the decommissioning period. A statistical package in the R language was used to derive the regression model. Finally, the regression model was applied to estimate the decommissioning cost for Kori unit 1. The estimated decommissioning cost for Kori unit 1 was 663.40~928.32 million US dollars (782,812~1,095,418 million Korean won).

Fire Protection Regulations for Ensuring Fire Safety during Decommissioning Nuclear Power Plants in Korea (해체원전 화재안전 확보를 위한 화재방호 규정 고찰)

  • Kim, Jung-Wun;Park, Chan-Geun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.134-140
    • /
    • 2020
  • Nuclear power plants (NPPs) in Korea are required to be maintained using a defense in-depth approach to prevent leakage of radioactive substances outside the plant and allow safe shutdown in the event of a fire. Periodic testing must be conducted to ensure that the fire protection facilities perform as required by the laws for various nuclear reactor types. In June 2017, for the first time in Korea, a nuclear plant, Kori Unit 1, was permanently shut down. It was prepared for decommissioning in accordance with the fire protection regulations imposed by the regulatory body. However, a standard protocol is necessary for systematically establishing the fire protection program for decommissioning of NPPs in the future. Therefore, the nuclear legal systems of countries with many operating nuclear power plants, such as the United States, Japan, Canada, and various European countries, were reviewed and guidelines for establishing a fire protection program for decommissioning NPPs was suggested; the fire protection requirements stated by Reg Guide 1.191 (Decommissioning fire protection program for NPPs during decommissioning and permanent shutdown) were used as a model. Suggestions for establishing legal regulations to optimize fire protection programs and secure basic technology for decommissioning NPPs were also made.

The effect of sensitive and non-sensitive parameters on DCGL in probability analysis for decommissioning of nuclear facilities

  • Hyung-Woo Seo;Hyein Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3559-3570
    • /
    • 2023
  • In the decommissioning of nuclear facilities, Derived Concentration Guideline Level (DCGL) derivation is necessary for the release of the facility after the site remediation, which also needs to be implemented in the stage of establishing a decommissioning planning. In order to derive DCGL, the dose assessment for the receptors can be conducted from residual radioactivity by using RESRAD code. When performing sensitivity analysis on probabilistic parameters, secondary evaluation is performed by assigning a single value for parameters classified as sensitive. However, several options may arise in the handling of nonsensitive parameters. Therefore, we compared the results of the first execution of RESRAD applying probabilistic parameters for each scenario with the results of the second execution applying a single value to sensitive parameters among the probabilistic parameters. In addition, we analyzed the effect of setting options for non-sensitive parameters. As a result, the effect on DCGL were different depending on the application scenario, the target radionuclides, and the input parameter selections. In terms of the overall evaluation period, the DCGL graph of the default option was generally shown as the most conservative except for some radionuclides. However, it will not necessarily be given priority in the aspect of the need to reflect site characteristics. The reason for selecting a probabilistic parameter is the availability of the parameter and the uncertainty of applying a single value. Therefore, as an alternative, it can be consistently applied to distribution as an option for non-sensitive parameters after sensitivity analysis.

Safety Assessment for the Landfill Disposal of Decommissioning Waste Solidified by Magnesium Potassium Phosphate Cement

  • Jeong, Jongtae;Baik, Min-Hoon;Lee, Jae-Kwang;Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • The decommissioning of a nuclear power plant generates large amounts of radioactive waste, which is of several types. Radioactive concrete powder is classified as low-level waste, which can be disposed of in a landfill. However, its safe disposal in a landfill requires that it be immobilized by solidification using cement. Herein, a safety assessment on the disposal of solidified radioactive concrete powder waste in a conceptual landfill site is performed using RESRAD. Furthermore, sensitivity analyses of certain selected input parameters are conducted to investigate their impact on exposure doses. The exposure doses are estimated, and the relative impact of each pathway on them during the disposal of this waste is assessed. The results of this study can be used to obtain information for designing a landfill site for the safe disposal of low-level radioactive waste generated from the decommissioning of a nuclear power plant.

Development of an Acceptance Criteria Implementation Flow Chart for verifying the Disposal Suitability of Radioactive Waste from Decommissioning of Nuclear Power Plants (원자력발전소 해체 방사성폐기물 처분 적합성 검증을 위한 인수기준 이행 흐름도 개발)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Sung, Suk Hyun;Park, Hae Soo;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • When the decommissioning of South Korea nuclear power plants is promoted in earnest with the permanent shutdown of Kori Unit 1 in 2017, a large amount of various types of radioactive waste will be generated. For minimal generation and safe management of decommissioning waste, the waste should be made by appropriate classification of the dismantling waste characteristics in accordance with physical, chemical and radiological characteristics to meet the acceptance criteria of disposal facilities. Replacing the preliminary inspection at the site for the compliance of the waste acceptance criteria (WAC) of medium and low-level radioactive waste with the generator's own radioactive waste certification program (WCP), from the perspective of disposal, the optimization of waste management at the national level contributes to the efficient availability of disposal, such as the processing of non-conforming radioactive wastes at the site. To this end, it is important to evaluate radioactivity in each system and area such as nuclear reactors before decommissioning is carried out in earnest, and the prior removal of harmful wastes is important. From waste collection to waste disposal, decommissioning waste should be managed at each stage in consideration of the acceptance criteria of disposal facilities to minimize the generation of non-conforming waste.

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook;Kim, Seung-Soo;Kim, Gye-Nam;Han, Gyu-Seong;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.840-846
    • /
    • 2016
  • Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

A Study on Annual Release Objectives and Annual Release Limits of Gaseous Effluents During Decommissioning of Nuclear Power Plants (원전 해체 시 기체상 유출물의 연간 방출관리치 및 방출한도치에 관한 연구)

  • Lee, Seung-Hee;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.299-311
    • /
    • 2019
  • Decommissioning is a critical issue in Korea. Although compared with the operation of nuclear power plants the release of radioactive materials during decommissioning is not expected to be significant, residents should always be protected from radiation exposure. To manage this effectively, Annual Release Objectives (ARO) and Annual Release Limits (ARL) were derived from dose standards in the NSSC Notice and dose limit for the public. Based on meteorological data for the three years from 2008 to 2010 in the Shin Kori nuclear power plant site, atmospheric dispersion and ground deposition factors of gaseous effluent were evaluated using the XOQDOQ computer code. The exposure dose was evaluated using the ENDOS-G computer code. Because of differences in radiological sensitivity according to age groups, the results of Annual Release Objectives (ARO) and Annual Release Limits (ARL) showed significant differences depending on the radionuclides. The evaluation methodology of this study will provide meaningful information for radioactive effluent management for decommissioning of nuclear power plants.

Hydrogen isotope exchange behavior of protonated lithium metal compounds

  • Park, Chan Woo;Kim, Sung-Wook;Sihn, Youngho;Yang, Hee-Man;Kim, Ilgook;Lee, Kwang Se;Roh, Changhyun;Yoon, In-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2570-2575
    • /
    • 2021
  • The exchange behaviors of hydrogen isotopes between protonated lithium metal compounds and deuterated water or tritiated water were investigated. The various protonated lithium metal compounds were prepared by acid treatment of lithium metal compounds with different crystal structures and metal compositions. The protonated lithium metal compounds could more effectively reduce the deuterium concentration in water compared with the corresponding pristine lithium metal compounds. The H+ in the protonated lithium metal compounds was speculated to be more readily exchangeable with hydrons in the aqueous solution compared with Li+ in the pristine lithium metal compounds, and the exchanged heavier isotopes were speculated to be more stably retained in the crystal structure compared with the light protons. When the tritiated water (157.7 kBq/kg) was reacted with the protonated lithium metal compounds, the protonated lithium manganese nickel cobalt oxide was found to adsorb and retain twice as much tritium (163.9 Bq/g) as the protonated lithium manganese oxide (69.9 Bq/g) and the protonated lithium cobalt oxide (75.1 Bq/g) in the equilibrium state.

Development of an information reference system using reconstruction models of nuclear power plants

  • Harazono, Yuki;Kimura, Taro;Ishii, Hirotake;Shimoda, Hiroshi;Kouda, Yuya
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.606-612
    • /
    • 2018
  • Many nuclear power plants in Japan are approaching the end of their planned operational life spans. They must be decommissioned safely in the near future. Using augmented reality (AR), workers can intuitively understand information related to decommissioning work. Three-dimensional (work-site) reconstruction models of dismantling fields are useful for workers to observe the conditions of dismantling field situations without visiting the actual fields. This study, based on AR and work-site reconstruction models, developed and evaluated an information reference system. The evaluation consists of questionnaires and interview surveys administered to six nuclear power plant workers who used this system, along with a scenario. Results highlight the possibility of reducing time and mitigating mistakes in dismantling fields. Results also show the ease of referring to information in dismantling fields. Nevertheless, it is apparently difficult for workers to build reconstruction models of dismantling fields independently.