• 제목/요약/키워드: Nuclear Safety Software

검색결과 187건 처리시간 0.023초

무인비행체 비행제어 Open Source 소프트웨어에 대한 정적분석 및 개선방안 (Static Analysis and Improvement Opportunities for Open Source of UAV Flight Control Software)

  • 장정훈;강유선;이지현
    • 한국항공우주학회지
    • /
    • 제49권6호
    • /
    • pp.473-480
    • /
    • 2021
  • 소형 무인비행체 드론의 비행제어기(Flight Controller) 소프트웨어로 널리 사용되고 있는 오픈소스(Open Source)에 대한 정적분석(Static Analysis)을 통해 소프트웨어 품질의 문제점을 분석하고 개선 방안을 제시한다. 소프트웨어 품질 기준으로는 국제적으로 널리 적용되고 있는 MISRA 코딩 규칙을 선정하였으며, 정적분석 도구는 국제 도구인증(Tool Certification)을 받아 항공분야 뿐만 아니라 안전성(Safety)이 요구되는 자동차, 철도, 원자력, 의료 등 모든 산업에서 활용되고 있는 LDRA Tool을 사용하였다. 오픈소스 모듈의 구조, 사용 데이터 분석, 코딩 규칙 준수, 품질 지표(복잡도 및 시험성) 등 소프트웨어의 품질 전반에서 안전성을 위협하는 문제점들을 발견하였으며, 이에 대한 개선 방안을 제시하였다.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

Nordic research and development cooperation to strengthen nuclear reactor safety after the Fukushima accident

  • Linde, Christian;Andersson, Kasper G.;Magnusson, Sigurdur M.;Physant, Finn
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.647-653
    • /
    • 2019
  • A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV - 1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the compared other alloys.

Quantitative measures of thoroughness of FBD simulations for PLC-based digital I&C system

  • Lee, Dong-Ah;Kim, Eui-Sub;Yoo, Junbeom
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.131-141
    • /
    • 2021
  • Simulation is a widely used functional verification method for FBD programs of PLC-based digital I&C system in nuclear power plants. It is difficult, however, to estimate the thoroughness (i.e., effectiveness or quality) of a simulation in the absence of any clear measure for the estimation. This paper proposes two sets of structural coverage adequacy criteria for the FBD simulation, toggle coverage and modified condition/decision coverage, which can estimate the thoroughness of simulation scenarios for FBD programs, as recommended by international standards for functional safety. We developed two supporting tools to generate numerous simulation scenarios and to measure automatically the coverages of the scenarios. The results of our experiment on five FBD programs demonstrated that the measures and tools can help software engineers estimate the thoroughness and improve the simulation scenarios quantitatively.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

Hardware-Oriented Reliability Centered Maintenance for the Diesel Generators of Wolsong Unit 1

  • Bae, Sang-Min;Park, Jin-Hee;Kim, Tae-Woon;Lee, Yoon-Kee;Song, Jin-Bae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.587-591
    • /
    • 1997
  • The DGs (Diesel Generators) in NPP (Nuclear Power Plant) has been used for the emergency electric power source to shut down the nuclear reactor safely in case of station blackout. The RCM (Reliability Centered Maintenance) has been applied to DGs for increasing the safety of NPP. The structured defects of DG were not remedied by the improvement of maintenance method. As the first stage of RCM, to find the structured defects, its failure modes were searched and analyzed through the ten year maintenance information. The structured defects such as the air compressor, the lubricating oil pressure, and the insufficient load were the root causes of main failures. The air reservoir reinstallation, the lubricating oil tube modification, the load bank installation, and the qualitative instrumentation were the solutions for the hardware oriented RCM of DGs. There remains the software oriented RCM such as the rejection of useless maintenance, the preventive maintenance, the database of maintenance information, and the predictive maintenance.

  • PDF

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

사례 연구 : 원전 안전성 계측제어 계통의 소프트웨어 개발 프로세스의 CMMI 기반 평가 (Case Study : CMMI based Appraisal for the Software Development Process of Nuclear Power Safety Measuring Control System)

  • 박승훈;윤경아;전상욱;배두환;장훈선;정재천;김재학;한희한
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.265-267
    • /
    • 2003
  • 소프트웨어 품질에 대한 중요성과 관심이 커짐에 따라 많은 산업체에서 내부 프로세스를 평가하고 개선하려는 노력을 기울이고 있다. 지금까지 프로세스와 관련된 여러 가지 표준들이 제시되었고 최근에는 CMMI가 점차 비중을 키워가고 있다. 이에 따라 원전 안전성 계측제어 계통의 소프트웨어 관련 프로세스를 대상으로 CMMI를 기준으로 평가를 수행함으로써 원전 프로세스의 강점과 약점을 파악하고 프로세스 개선을 위한 방안을 제시하고자 한다.

  • PDF

원자력 시설에 적합한 안전 필수 소프트웨어의 개발 방법 (A Development Method of Safety Critical Software for Nuclear Facilities)

  • 박재관
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.229-231
    • /
    • 2018
  • 원자력 시설에 적용되는 안전 필수 시스템의 소프트웨어는 매우 높은 수준의 신뢰성이 요구되기 때문에 개발 과정은 중요한 인허가 이슈이다. 원자력 안전 필수 시스템에서의 소프트웨어 공학 활동은 산업표준을 준용하는 부분이 있으나, 일부 상이한 부분이 존재하므로 주의해야 한다. 이 논문은 원자력 요건에 적합한 소프트웨어 개발 방법을 제안한다. 원자력 안전 필수 소프트웨어는 기능 및 성능 요건과 더불어, 안전 요건과 보안 요건을 종합적으로 고려하여 계획 수립, 명세화, 확인 및 검증, 시험을 수행하는 것이 중요하다.

NEW DEVELOPMENT OF HYPERGAM AND ITS TEST OF PERFORMANCE FOR γ-RAY SPECTRUM ANALYSIS

  • Park, B.G.;Choi, H.D.;Park, C.S.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.781-790
    • /
    • 2012
  • The HyperGam program was developed for the analysis of complex HPGe ${\gamma}$-ray spectra. The previous version of HyperGam was mainly limited to the analysis of ${\gamma}$-ray peaks and the manual logging of the result. In this study, it is specifically developed into a tool for the isotopic analysis of spectra. The newly developed features include nuclide identification and activity determination. An algorithm for nuclide identification was developed to identify the peaks in the spectrum by considering the yield, efficiency, energy and peak area for the ${\gamma}$-ray lines emitted from the radionuclide. The detailed performance of nuclide identification and activity determination was accessed using the IAEA 2002 set of test spectra. By analyzing the test spectra, the numbers of radionuclides identified truly (true hit), falsely (false hit) or missed (misses) were counted and compared with the results from the IAEA 2002 tests. The determined activities of the radionuclides were also compared for four test spectra of several samples. The result of the performance test is promising in comparison with those of the well-known software packages for ${\gamma}$-ray spectrum analysis.