• Title/Summary/Keyword: Nuclear Safety Features

Search Result 168, Processing Time 0.025 seconds

Development of RETRAN-03/MOV Code for Thermal-Hydraulic Analysis of Nuclear Reactor Under Mowing Conditions

  • Kim, Jae-Hak;Park, Good-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.542-550
    • /
    • 1996
  • Nuclear ship reactors have several features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been peformed under rolling, heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removal to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions.

  • PDF

Design of large-scale sodium thermal-hydraulic integral effect test facility, STELLA-2

  • Lee, Jewhan;Eoh, Jaehyuk;Yoon, Jung;Son, Seok-Kwon;Kim, Hyungmo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3551-3566
    • /
    • 2022
  • The STELLA program was launched to support the PGSFR development in 2012 and for the 2nd stage, the STELLA-2 facility was designed to investigate the integral effect of safety systems including the comprehensive interaction among PHTS, IHTS and DHRS. In STELLA-2, the long-term transient behavior after accidents can be observed and the overall safety aspect can also be evaluated. In this paper, the basic design concept from engineering basis to specific design is described. The design was aimed to meet similarity criteria and requirements based on various non-dimensional numbers and the result satisfied the key features to explain the reasoning of safety evaluation. The result of this study was used to construct the facility and the experiment is on-going. In general, the final design meets the similarity criteria of the multidimensional physics inside the reactor pool. And also, for the conservation of natural circulation phenomena, the design meets the similarity requirements of geometry and thermo-dynamic behavior.

Development of a Korean roadmap for technical issue resolution for fission product behavior during severe accidents

  • Kim, Han-Chul;Ha, Kwang Soon;Kim, Sung Joong;Seo, Miro;Kang, Sang-Ho;Lee, Doo Yong;Song, Yong-Mann;Lee, Jongseong;Im, Hee-Jung;Cho, Chang-Sok;Yeon, Jei-Won;Kim, Sung Il;Cho, Song-Won;Song, Jinho;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1575-1588
    • /
    • 2017
  • In order to develop a domestic research roadmap for severe accidents, a special committee was established by the Korean Nuclear Society. One of the subcommittees discussed the characteristics and the relevant technical issues in the stages of fission product release and physical forms of radionuclide release and transport. The group members developed a tree to identify fission product release phenomena by tracing failures of individual defense-in-depth barriers and added possible countermeasures against failure. For each elemental issue, they searched for technical problems by examining the phenomena, accident management actions, and regulatory aspects relevant to the mitigation features for containment, including mitigation strategies against containment bypass accidents. Regulatory concerns, including the source term and the acceptance criteria for radionuclide release, were also considered. They identified further research needs regarding important technical issues based on the degree of the current knowledge level in Korea and in foreign countries, looking at the significance and urgency of issues and the expected research period required to reach an advanced level of knowledge. As a result, the group identified the 12 most important and urgent issues, most of which were expected to require mid-term and long-term research periods.

Simulator development Using Information Visualization Into Virtual Reality Laboratory for KALIMER (비주얼 시뮬레이터를 이용한 KALIMER가상현실 구현)

  • Kwan-Seong Jeong;Young-min Kwon;Yong-Bum Lee;Won-Pyo Chang;Do-Hee Hahn
    • The Journal of Society for e-Business Studies
    • /
    • v.6 no.2
    • /
    • pp.13-24
    • /
    • 2001
  • The Real-Time Best-Estimate simulator NPA4K is being developed for providing an efficient nuclear power, KALIMER, simulation environment for transient safety analyses using information visualization. The advanced features of NPA4K simulator are the Once-Through Running Environment, Functionalities of displaying the several X-Y Plot on one system, and Multi-thread Processing, The objective of NPA4K simulator is ta realize the Virtual Reality Environment through Network and Internet technology in Nuclear Power Plants.

  • PDF

REACTOR PHYSICS CHALLENGES IN GEN-IV REACTOR DESIGN

  • DRISCOLL MICHAEL J.;HEJZLAR PAVEL
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An overview of the reactor physics aspects of Generation Four(GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and ecoomics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

  • Kastanya, D.;Boyle, S.;Hopwood, J.;Park, Joo Hwan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.573-580
    • /
    • 2013
  • The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR) is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The $CANDU^{(R)}$ reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC) and Large Break Loss of Coolant Accident (LBLOCA) events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

  • Lee, Seung Woo;Kim, Ar Ryum;Park, Jinkyun;Kang, Hyun Gook;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.153-163
    • /
    • 2016
  • Environments in nuclear power plants (NPPs) are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs). Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA), which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

Analysis of the Bacteria in Nuclear Medicine (핵의학 검사실내 세균 분석)

  • Shin, Seong-Gyu;Lee, Hyo-Yeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, the bacterial contamination level of equipments and devices in the nuclear medicine department of a university hospital was investigated. CNS was detected from the sample collected from the door opening button of the nuclear medicine department. Bacillus sp. was detected from the table and CNS with Bacillus sp. were detected from the control button at the PET-CT room no.1. Also, CNS was detected from the table and the control button at the PET-CT room no.2. In the distribution room no.1, CNS and Bacillus sp. were detected while CNS being detected from the distribution room no.2 and CNS with Bacillus sp. being detected from the distribution room no.3. In the injection room, Enterrococcus faecium and Pontoea sp. were detected. On the table of the ecsomatics room, Pontoea sp. was detected. Bacillus sp. was detected from the inside of the syringe Pb shield and CNS was detected from the outside. Enterrococcus faecium was detected from the Gamma camera table and Bacillus sp. was detected from the door grip. On the chair at the patient waiting room, Pseudomonas aeruginosa abd Bacillus sp. were detected. Therefore, it was understood that infection should be prevented by securely sterilizing examination devices after each examination, maintaining cleanliness by regular sterilization of waiting chairs and such objects with a number of direct contacts with patients, and infection education for the features of nuclear department.

EXTENSION OF OPERATIONAL LIFE-TIME OF WWER-440/213 TYPE UNITS AT PAKS NUCLEAR POWER PLANT

  • Katona, Tamas Janos;Ratkai, Sandor
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.269-276
    • /
    • 2008
  • Operational license of WWER-440/213 units at Paks NPP, Hungary is limited to the design lifetime of 30 years. Prolongation by additional 20 years of the operational lifetime is feasible. Moreover, enhancement of the reactor thermal power by 8% will increase both the net power output and the competitiveness of the plant. Paks NPP is a pioneer considering the power up-rate and preparation of long-term operation of WWER-440/213 design. Systematic preparatory work for long-term operation of Paks NPP has been started in 2000. A regulatory framework and a comprehensive engineering practice have been developed. According to the authors view, creation of a gapless engineering system via consequent application of best practices, and feed-back of experiences together with proper consideration of WWER-440/V213 features are the decisive elements of ensuring the safety of long-term operation. That systematic engineering approach is in the focus of recent paper. Key elements of justification and measures for ensuring the safety of long-term operation of Paks NPP WWER-440/213 units are identified and discussed. These are the assessment of plant condition and review of adequacy of ageing management programmes, also the review, validation and reconstitution of time limited ageing analyses as core tasks of licence renewal.