• Title/Summary/Keyword: Nuclear Power Plant Performance

Search Result 500, Processing Time 0.026 seconds

Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP (면진 원전 면진-비면진구간 연결 배관의 내진성능 평가)

  • Hahm, Daegi;Park, Junhee;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

A Study on Hydraulic Transients of Letdown System of Nuclear Power Plant (원자력발전소 유출계통의 과도현상에 대한 연구)

  • Kim, Min;Chung, Chang-Kyu;Kim, Eun-Kee;Ro, Tae-Sun;Lee, Soung-No;Yoo, Seong-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.493-498
    • /
    • 2002
  • The letdown system of pressurized water reactor (PWR) nuclear fewer plants had experienced instabilities in letdown system due to unacceptable flow characteristics of control valves. The Korean Standard Nuclear Power Plants (KSNPs) have three flow paths in parallel for letdown new control. Each flow path consists of two offices and one isolation valve. This study evaluates the effect of orifice arrangement and valve stroke time of letdown isolation valve on the system transients because sudden flow changes due to valve actuation can generate high pressure peaks in letdown line. A pressure transient analysis has been preformed to evaluate the impact of dynamic transients. This analysis uses MMS which is a simulation code developed by EPRI based on the method of characteristics. The result shows that the pressure peak is reduced in the continuous arrangement but negligible. Additionally, it shows that the stroke time of linear type flog valve greater than 15 seconds can give more stable performance.

  • PDF

Experimental Studies on Ultrasonic Guided Waves for the On-Line Inspection of Structural Integrity of Nuclear Power Plants (원전 기기 건전성의 온라인 검사를 위한 유도 초음파의 실험적 연구)

  • Eom, Heung-Seop;Kim, Jae-Hee;Song, Sung-Jin;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • Deployment of an advanced on-line monitoring of the component integrity offers a prospect of improved performance, enhanced safety, and reduced overall cost for nuclear power plants. Ultrasonic guided waves have been known as one of the promising techniques that could be utilized for on-line monitoring. The present work is aimed at developing a new method for on-line monitoring of the pipes during the operation period of nuclear power plants. For this purpose, the steam generator (S/G) tube was selected as an object of tile experiment. Dispersion corves and the incident angles corresponding to the specific modes were calculated for the S/G tube. The modes of guided waves were identified by the time-frequency diagrams obtained by the short time Fourier transform. It was experimentally confirmed that there was no mode conversion when the ultrasonic guided waves passed over the curved region of the S/G tube. An optimum mode of guided wave for the S/G tube was suggested and verified by the experiment.

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.

Construction of the Heat Pump System Using Thermal Effluents for Greenhouse Facilities in Jeju and Evaluation of Cooling Performance (제주 시설온실 냉난방을 위한 발전소 온배수 활용 열펌프 시스템 구축 및 냉방성능 평가)

  • Lee, Yeon-Gun;Heo, Jaehyeok;Lee, Dong-Won;Hyun, Myung-Taek
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.70-79
    • /
    • 2018
  • A heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO was constructed with the capacity of 300 RT to supply cool or hot water to greenhouse facilities located 3 km from the power station. The way of transporting heat from the thermal effluent to greenhouses at a long distance was optimized, and a monitoring system to measure the water temperature and detect a leakage in a pipe conduit was also installed. This paper presents the system configuration of the constructed heat pump system for air conditioning and heating of greenhouse facilities in Jeju, and the characteristics of major components deployed in the system. The preoperational tests of the heat pump system were conducted during the summer season in 2018 for evaluation of its cooling performance. The operational stability and cooling performance of the heat pump system were confirmed by investigating the measured fluid temperature and flow rate, and COP of the heat pump in a cooling mode.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Time-Optimal Power Control for KMRR Using Reactivity Constraint Method (반응도 제한법에 의한 KMRR의 시간 최적 출력 제어)

  • Lee, Byung-Ill;Kim, Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 1991
  • For automatic power control of KMRR, a new method, Reactivity Constraint Method, is applied for time optimal control. This method limits the net reactivity to the amount that can be offset by instantaneous control rod action. The reactivity to be constrained for the constant reactor period should be obtained by the dynamic period equation. A new formulation of the dynamic period equation for 2-point kinetics model is presented. A methematical controller model was applied to the plant simulator, KMRSIM to test this control law. The performance test showed that reactivity constraint approach is also a reliable means for reactor power change control.

  • PDF

A Study on Bagging Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant (원전 증기발생기 세관 결함 크기 예측을 위한 Bagging 신경회로망에 관한 연구)

  • Kim, Kyung-Jin;Jo, Nam-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.302-310
    • /
    • 2010
  • In this paper, we studied Bagging neural network for predicting defect size of steam generator(SG) tube in nuclear power plant. Bagging is a method for creating an ensemble of estimator based on bootstrap sampling. For predicting defect size of SG tube, we first generated eddy current testing signals for 4 defect patterns of SG tube with various widths and depths. Then, we constructed single neural network(SNN) and Bagging neural network(BNN) to estimate width and depth of each defect. The estimation performance of SNN and BNN were measured by means of peak error. According to our experiment result, average peak error of SNN and BNN for estimating defect depth were 0.117 and 0.089mm, respectively. Also, in the case of estimating defect width, average peak error of SNN and BNN were 0.494 and 0.306mm, respectively. This shows that the estimation performance of BNN is superior to that of SNN.

Seismic Response Comparative Evaluation Study on Floor Isolation using LRB and FPS in Main Control Room of Nuclear Power Plant (LRB, FPS 지진격리시스템의 지진응답특성 비교연구)

  • Lee, Kyung-Jin;Ham, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • An experimental study was performed to evaluate seismic reduction performance and the applicability of 2-dimensional floor isolation system to the main control room of a nuclear power plant. A lead-rubber bearing (LRB) and a friction pendulum system (FPS) were designed and fabricated for a 2-dimensional floor isolation system. A partial experimental model of a main control room with the LRB and FPS was tested using a shaking table. The experimental model consisted of a control panel, a 2.5m${\times}$2.5m access floor, and four LRB and FPS. The artificial time histories based on the horizontal floor response spectrums (OBE, SSE) of the main control room were used as earthquake input signals. Compared to the non-isolated system, the seismic response of experimental models using a 2-dimensional floor isolation system showed considerable seismic reduction performance against an earthquake.