• 제목/요약/키워드: Nuclear Material

검색결과 1,832건 처리시간 0.028초

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제5권5호
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

Thermophysical, Hydrodynamic and Mechanical Aspects of Molten Core Relocation to Lower Plenum

  • Kune Y. Suh;Huh, Chang-Wook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.707-712
    • /
    • 1997
  • This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regardt to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard power plant (KSNPP) reactor The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective.

  • PDF

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

방사선측정치를 이용한 아스콘 포장 및 노상의 현장밀도와 함수비 측정에 관한 연구 (A Study on the Determination of Density and Moisture Content of Asphalt Concrete Pavement and Subgrade Using Nuclear Density Meter)

  • 진성기;도덕현
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.103-116
    • /
    • 1994
  • The objective of this study was to determine the criteria for density and moisture content measurements made with a nuclear density meter on common materials in the construction field. The study also sought to test a full-type nuclear density meter in controlling the density of overlay layers( 2.5~5.0cm). In order to determine the accuracy and reliablility of nuclear guage measurements made on construction materials, laboratory and field tests were conducted. Wooden blocks( 65 x 45 ${\times}$ 50 cm) and a special steel compactor( 4.7kg) were constructed in order to carry out tests which were conducted on three different materials; coarse gramed soil, fine grained soil, and AC material. Throughout all laboratory and field tests, the nuclear density and moisture content were determined using Humboldt 5OOLP nuclear gauge. The tests on subgrade material entailed obtaining density measurements by means of both the sand replacement method and the nuclear density meter. The results of the sand replacement method were then compared to the readings recorded bu the meter. As in the subgrade material tests, density measurements made during AC pavement tests were also determined using the unclear meter in addition to a second means; through the core method. The meter readings and core densties were compared as was done in the tests on subgrade materials. The correlation between the results of the sand replacement test( also, the core method) and meter readings on subgrade material was then determined. Sirnilarly, the observed results were then analyzed through linear regression. The tests to determine thin-lift density by means of a full-type nuclear density meter also conducted on the overlay layers( about 4. 8cm thickness) above AC pavements at road construction sities in Korea.

  • PDF

Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

  • Clarke, Shaun D.;Hamel, Michael C.;Di fulvio, Angela;Pozzi, Sara A.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1354-1357
    • /
    • 2017
  • Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for $^{252}Cf$ and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-of-flight kinematics can be used. With this system, energy spectra can also be obtained as a function of position. Spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.

인증표준물질(CRM)을 이용한 방사면역측정법의 회수율 평가 (The Evaluation of Recovery Rate of Radioimmunoassay Using Certified Reference Material (CRM))

  • 최성희;신선영;임소희;홍미경;노경운;김진의
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.158-162
    • /
    • 2014
  • 공인된 기구에 의해 발급된 문서를 동반하는 인증표준물질은 특성값과 추정값의 신뢰정도를 나타내는 연계 불확도, 그리고 측정한 결과가 명시된 불확정 정도의 범위 내에서 국가 측정 또는 국제측정표준에 일치되도록 연속적으로 비교하고 교정하는 소급성을 제공하는 표준물질이다. 회수율 검사는 검체를 측정하여 얻은 값이 참값에서 얼마만큼 벗어났는지의 차이를 말하며 키트의 정확도를 반영한다. 이러한 인증표준물질을 가지고 회수율 검사를 하는 것은 체외 방사면역진단키트의 정확성을 보여주며 이러한 평가는 매우 중요하다. 인증표준물질은 NIBSC (National Institute for biological standard and control, United Kingdom)와 IRMM (Institute for Reference Materials and Measurements, Belgium)에서 구입하였고 검사 종목은 T4, Ferritin, PSA, Prolactin, AFP 그리고 TSH으로 총 6종목이다. T4는 IRMM의 표준물질을 사용하였고 나머지 종목은 NIBSC의 표준물질을 사용하였다. C-1 (저농도), C-2 (중농도), C-3 (고농도) 3 level로 제조하여 본원에서 사용하는 키트를 이용하여 4회 측정하였다. WHO 인증표준물질을 이용한 회수율 측정에서 T4 90%, Ferritin 88%, PSA 94%, Prolactin 99%, AFP 94%, TSH 93%였다. 6개 종목의 회수율 측정에서 88-99%로 양호한 결과를 보였다. 핵의학 체외진단키트의 정확성을 높이기 위해서 이 연구가 다른 검사실의 키트로 확장되어 검사가 되어야 하고 검사실간에도 교류가 필요하다. 인증표준물질을 이용한 체외진단키트의 회수율 평가가 앞으로도 지속되어야 하며 결과의 정확성은 환자의 만족의 증가로 이어질 것으로 기대한다.

  • PDF

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.