• Title/Summary/Keyword: Nuclear Fuels

Search Result 382, Processing Time 0.029 seconds

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

A surrogate model for the helium production rate in fast reactor MOX fuels

  • D. Pizzocri;M.G. Katsampiris;L. Luzzi;A. Magni;G. Zullo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3071-3079
    • /
    • 2023
  • Helium production in the nuclear fuel matrix during irradiation plays a critical role in the design and performance of Gen-IV reactor fuel, as it represents a life-limiting factor for the operation of fuel pins. In this work, a surrogate model for the helium production rate in fast reactor MOX fuels is developed, targeting its inclusion in engineering tools such as fuel performance codes. This surrogate model is based on synthetic datasets obtained via the SCIANTIX burnup module. Such datasets are generated using Latin hypercube sampling to cover the range of input parameters (e.g., fuel initial composition, fission rate density, and irradiation time) and exploiting the low computation requirement of the burnup module itself. The surrogate model is verified against the SCIANTIX burnup module results for helium production with satisfactory performance.

A Scheme of Better Utilization of PWR Spent Fuels (가압경수로 사용후핵연료 이용확대 방안연구)

  • Chung, B.J.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 1991
  • The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is Investigated in this study. This scheme of utilizing Pm spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification to the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burnup and power distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The result show that most tandem fuel cycle options considered in this study are technically feasible as well as economically viable.

  • PDF

Estimation of Discharged Amounts of U and Pu Nuclides from the PWR Spent Fuels in Korea (국내 가압 경수형 원자로의 사용후 핵연료에서 잔류하는 U과 Pu핵종의 발생량 추정)

  • Lim, Chae-Jun;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.165-169
    • /
    • 1988
  • As a part of tandem fuel cycle feasibility study, the residual U and Pu nuclide contents of PWR spent fuels are computed using ORICEN2 code for each Korea Nuclear Unit and batch to investigate the potential of utilizing them as CANDU fuels. The annual and accumulated discharged amounts of U and Pu nuclides are computed for the PWRs from KNU 1 through KNU 10. The results of computation show that the spent fuels having 0.7-0.8 w/o U-235 are dominant and considerable amounts of fissile Pu are produced. The enrichment of U-235 is less than the expected 0.8-0.9 w/o U-235 since the burnups offered by KEPCO are higher than those of other PWRs.

  • PDF

A Trend of Sustainable Recycling Systems of Spent Nuclear Fuels (지속가능한 사용후-핵연료 재활용 시스템의 개발 동향)

  • Kim, Seong-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.236-241
    • /
    • 2011
  • In this study, considering a degree of proliferation resistance and sustainability, development status of perspective recycling systems for spent nuclear fuels (SNF) is comprehensively reviewed on the basis of the urgent needs of sustainable management measures for high level radioactive wastes such as spent nuclear fuels (SNF).

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.

Source Intensity Analysis of DUPIC Fuel (DUPIC 핵연료의 조사선량률 분석)

  • Kim, Yun-Goo;Lim, Jae-Yong;Park, Bhum-Lak;Park, Kwang-Heon;Whang, Ju-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 1996
  • Source intensities in terms of the exposure rates at 1m from the fresh and spent DUPIC fuels, made from standard and extended turnup PWR fuels, were analyzed. Two cases were studied based on the degree of elimination of removable elements. Homogeneous mixture model was applied to get the exposure rate. The exposure rate turned out to be very high and sensitive to Cs elimination during the dry process. About 90% of exposure can be reduced in the case of fresh DUPIC fuel made from 10-year cooled spent PWR fuels if Cs is fully removed during the dry process. The main radiation source in spent fuels is Cs-137. The dry storage of spent DUPIC fuel may need a longer wet storage period and require a further review.

  • PDF

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.