• Title/Summary/Keyword: Nuclear Fuel Rod Support Grid

Search Result 21, Processing Time 0.056 seconds

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

The Grid Strap Vibration Characteristics of the 5×5 Nuclear Fuel Mock-up (5×5 핵연료 모의 집합체의 지지격자 스트랩 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.619-625
    • /
    • 2012
  • Since the fuel is always exposed to turbulent flow, the grid strap shows flow induced vibration characteristics that impact on the nuclear fuel soundness. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring and dimple support are contacted with rods by friction in the limited space. This paper focuses on investigation of the grid strap(test fuel strap, TFS) vibration in one cell. TFS consists of a single spring and double dimples. To identify the grid strap vibration, modal analysis of the strap is performed using finite element method(FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in investigation of flow induced vibration(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

Dynamic Characteristics of Fuel Rods

  • Lee, Hae
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.255-266
    • /
    • 1980
  • The dynamics of a typical PWR fuel rod are investigated. Mathematical models of the support grid and fuel rod were derived and verified experimentally. The finite element model and SAP V computer program were used to calculate the natural frequencies and mode shapes. A singlespan beam model is also given for predicting the fundamental mode dynamics of prototype fuel rods. The results agree quite well with the finite-element model results.

  • PDF

Experimental Study on the Damping Estimation of the 5×5 Partial Fuel Assembly (5×5 부분핵연료 집합체의 감쇠추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.163-168
    • /
    • 2006
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle $(5\times5)$ which is called partial fuel assembly is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid to obtain the Flow-Induced Vibration (FIV) characteristics of the scaled fuel assembly over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the assembly prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the scaled test assembly. For the damping factor of the partial fuel assembly and the grid cage at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the partial fuel assembly is about $0.7\%$ with reasonable error of $2\%$ for the previous results. Nonlinear behavior of the partial fuel assembly might be stem mainly from the rod-grid support configuration.

Experimental study on the damping estimation of the 5$\times$5 rod bundle (5$\times$5 봉다발의 감쇄추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.503-506
    • /
    • 2005
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle (5$\times$5) is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid like the coolant mixing performance and to obtain the Flow-Induced Vibration (FIV) characteristics of the rod bundle over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the bundle prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the small scaled test bundle. For the damping factor of the rod bundle and the grid case at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the rod bundle is about 0.7% with reasonable error of 2% for the previous results. Nonlinear behavior of the rod bundle might be stem mainly Iron the rod-grid support configuration.

  • PDF

The Strap Vibration Characteristics in $5{\times}5$ Grid Exposed to Axial Flow (축방향 유속에 노출된 $5{\times}5$ 지지격자 스트랩의 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.911-916
    • /
    • 2012
  • It is important to identify dynamic characteristics of nuclear fuel components. Since the fuel always exposed to turbulent flow, the dynamic contact between grids and rods is one of the fuel failure modes. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring support are placed in the limited space. The strap in a cell has single spring and double dimples and this paper focuses on investigation of the grid strap(Test Fuel Strap, TFS) vibration in one cell. To identify the grid strap vibration, modal analysis of the strap is performed using Finite Element Method (FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in INvestigation of Flow INduced vIbraTion(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

  • PDF

FIV Analysis for a Rod Supported by Springs at Both Ends

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.619-625
    • /
    • 2001
  • An axial-flow-induced vibration model was proposed for a rod supported by two translational springs at both ends. For developing the model, a one-mode approximation was made based on the assumption that the first mode was dominant in vibration behavior of the single span rod. The first natural frequency and mode shape functions for the flow-induced vibration, called the FIV model were derived by using Lagrange's method. The vibration displacements at reactor conditions were calculated by the proposed model for the spring-supported rod and by the previous model for the simple-supported(55) rod. As a result, the vibration displacement for the spring-supported rod was larger than that of the 55 rod, and the discrepancy between both displacements became much larger as flow velocity increased. The vibration displacement for the spring-supported rod appeared to decrease with the increase of the spring constant. AS flow velocity increased, the increase rate of vibration displacement was calculated to go linearly up, and that of the rod having the short span length was larger than that of the rod having the long span length although the displacement value itself of the long span rod was larger than that of the short one.

  • PDF

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds (부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성)

  • Kim, Jin-Seon;Park, Se-Min;Kim, Yong-Hwan;Lee, Seung-Jae;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.130-133
    • /
    • 2007
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.