• Title/Summary/Keyword: Nuclear Fuel Cycles

Search Result 60, Processing Time 0.028 seconds

Structural Analysis of CANFLEX Fuel Bundles

  • H. Y. Kang;K. S. Sim;Lee, J. H.;Kim, T. H.;J. S. Jun;C. H. Chung;Park, J. H.;H. C. Suk
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1008-1013
    • /
    • 1995
  • The CANFLEX fuel bundle has been developed by KAERI/AECL jointly to facilitate the use of various fuel cycles in CANDU-6 reactor. As one of the design evaluations, the structural analysis of the fuel bundles by hydraulic drag force is performed to evaluate the fuel integrity in the period of the refuelling in CANDU-6. The structural integrity is evaluated by FEM modelling for the complicated bundles configuration in channel. It is noted that the present analysis method is newly developed for the structural integrity evaluation. The analysis results show that the fuel bundle is shown to keep its structural integrity during the refuelling.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Dimensional Measurement of Spent Fuel Assemblies Using Image Processing Technique (영상처리기술에 의한 사용후핵연료 집합체의 제원 측정)

  • Koo, Dae-Seo;Park, Seong-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A pool image processing measurement method has been developed to improve the examination efficiency and to minimize the errors of dimensional measurements of spent fuel assemblies in pool. Diameter and length measurements of mock-up fuel rods using the image processing system are $-0.24{\pm}0.03mm,\;0.34{\pm}0.06mm$ on the basis of the true value and their maximum errors are within -0.3 and 0.4mm, respectively, According to the result of dimensional measurement of spent fuels in pool, the upper and lower part diameter and mid part diameter of fuel rods of the J44 fuel assembly irradiated for 2 cycles in the Kori-2 nuclear reactor were decreased by about 2.0 and 3.0% in comparison with design values, respectively. The length of fuel rods was elongated by about 0.4%. The change behavior of diameter and length. of fuel rods of the F02 fuel assembly irradiated for 3 cycles in the Kori-1 nuclear reactor showed a trend similar to the results of J44.

Probabilistic Analysis of Fuel Cycle Strategy in Korea

  • Kim, Jin-Soo;Kim, Chang-Hyo;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.219-229
    • /
    • 1976
  • A statistical approach is employed to investigate the relative advantages of several alternative fuel cycles suitable for a hypothetical 1125 MWe plant in Korea. All the fuel cost parameters are treated as statistical variables, each being associated with an appropriate probability distribution function. Through a random sampling procedure, the probability histograms on both capital requirements and break-even costs of various fuel cycle components are obtained. The histograms are then utilized to quantify the cost-benefit of the fuel cycle with reprocessing or the plutonium recycle over the throwaway cycle.

  • PDF

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

The Relationship between a Wear Depth :and a Decrease of the Contacting Force in the Nuclear Fuel Fretting (핵연료봉 프레팅마멸에서 마멸깊이와 접촉하중 감소사이의 관계)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Sliding wear tests have been performed to evaluate the effect of normal load decrease on the wear depth of nuclear fuel rods in room temperature air. The objectives of this study are to quantitatively evaluate the supporting ability of spacer grid springs, to estimate the wear depth by using the contacting force decrease and to compare the wear behavior with increasing test cycles (up to $10^7$) at each spring condition. The result showed that the contacting load decrease depends on the spring shape and the applied slip amplitude. The estimated wear depth is smaller when compared with measured wear depth. Based on the test results, the wear mechanism, the role of wear debris layer and the spring shape effect were discussed.

Fretting Wear Mechanisms of TiN Coated Nuclear Fuel Rod Cladding Tube (TiN 코팅한 핵연료봉 피복재의 프레팅 마멸기구)

  • 김태형;성지현;김석삼
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The fretting wear of a nuclear fuel rod it a dangerous phenomenon. In this study, TiN coating was used to reduce the fretting wear of Zircaloy-4 tube, a nuclear fuel rod cladding material. TiN coating is probably one of the molt frequently and successfully used PVD coatings for the mitigation of fretting wear. The fretting tester was designed and manufactured for this experiment. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that wear volume was improved 1.3∼3.2 times with TiN coating. The worn surfaces were observed by SEM. Wear mechanism at lower slip amplitude was the brittle cracks and rupture of TiN coating. However, adhesive and abrasive wear were mainly observed on most surfaces at higher slip amplitude.

Microstructural Characteristics of the Fuel Cladding Tubes Irradiated in Kori Unit 1

EVALUATION OF PROLIFERATION RESISTANCE USING THE INPRO METHODOLOGY

  • Yang, Myung-Seung;Park, Joo-Hwan;Ko, Won-Il;Song, Kee-Chan;Choi, Kun-Mo;Kim, Jin-Kyoung
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • The IAEA launched the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and developed the INPRO Methodology to provide guidelines and to assess the characteristics of a future innovative nuclear energy system in areas such as safety, economics, waste management, and proliferation resistance. The proliferation resistance area of the INPRO Methodology is reviewed here, and modifications for further improvements are proposed. The evaluation metrics including the evaluation parameters, evaluation scales and acceptance limits are developed for a practical application of the methodology to assess the proliferation resistance. The proliferation resistant characteristics of the DUPIC fuel cycle are assessed by applying the modified INPRO Methodology based on the developed evaluation metrics and acceptance criteria. The evaluation procedure and the metrics can be utilized as a reference for an evaluation of the proliferation resistance of a future innovative nuclear energy system.

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.