• Title/Summary/Keyword: Nuclear Fuel Cycle Analysis

Search Result 364, Processing Time 0.029 seconds

Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K

  • Jang, Jaerim;Kong, Chidong;Ebiwonjumi, Bamidele;Cherezov, Alexey;Jo, Yunki;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2803-2815
    • /
    • 2021
  • This paper addresses the uncertainty quantification and sensitivity analysis of a depleted light-water fuel assembly of the Turkey Point-3 benchmark. The uncertainty of the fuel assembly decay heat and isotopic densities is quantified with respect to three different groups of diverse parameters: nuclear data, assembly design, and reactor core operation. The uncertainty propagation is conducted using a two-step analysis code system comprising the lattice code STREAM, nodal code RAST-K, and spent nuclear fuel module SNF through the random sampling of microscopic cross-sections, fuel rod sizes, number densities, reactor core total power, and temperature distributions. Overall, the statistical analysis of the calculated samples demonstrates that the decay heat uncertainty decreases with the cooling time. The nuclear data and assembly design parameters are proven to be the largest contributors to the decay heat uncertainty, whereas the reactor core power and inlet coolant temperature have a minor effect. The majority of the decay heat uncertainties are delivered by a small number of isotopes such as 241Am, 137Ba, 244Cm, 238Pu, and 90Y.

Neutronic examination of the U-Mo accident tolerant fuel for VVER-1200 reactors

  • Semra Daydas;Ali Tiftikci
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2625-2632
    • /
    • 2024
  • In this study, we investigated the possibility of employing accident tolerant fuel (ATF) in VVER-1200/V491 assembly without gadolinium-containing fuel rods using the Monte Carlo code Serpent 1.1.7 with ENDF/B-VII cross-section library. The analysis involves assembly design with reflective boundary conditions. To compare the neutronic performances, U-5Mo, U-7.5Mo, U-10Mo, and U-15Mo fuels were chosen in addition to ordinary UO2 fuel. The concentration of 135Xe, 149Sm, fissile and fertile isotopes with burnup, reactivity feedback with fuel temperature variation, and β eff values were calculated. The results indicate that the fuel cycle length increases by 54.27% for U-5Mo, 32.6% for U-7.5Mo, and 13.8% for U-10Mo, while it decreases by 16.4% for U-15Mo fuel. Additionally, the effect of 95Mo content in natural Mo was investigated by reducing the 95Mo concentration. According to the results, each proposed fuel's fuel cycle length extended when the depletion ratio of 95Mo increased. Additionally, the calculations for reactivity feedback guarantee safe operating conditions for all U-xMo fuels.

Comparison of proliferation resistance among natural uranium, thorium-uranium, and thorium-plutonium fuels used in CANada Deuterium Uranium in deep geological repository by combining multiattribute utility analysis with transport model

  • Nagasaki, Shinya;Wang, Xiaopan;Buijs, Adriaan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.794-800
    • /
    • 2018
  • The proliferation resistance (PR) of Th/U and Th/Pu fuels used in CANada Deuterium Uranium for the deep geological repository was assessed by combining the multiattribute utility analysis proposed by Chirayath et al., 2015 with the transport model of radionuclides in the repository and comparing with that of the used natural U fuel case. It was found that there was no significant advantage for Th/U and Th/Pu fuels from the viewpoint of the PR in the repository. It was also found that the PR values for used nuclear fuels in the repository of Th/U, Th/Pu, and natural U was comparable with those for enrichment and reprocessing facilities in the pressurized water reactor (PWR) nuclear fuel cycle. On the other hand, the PR values considering the transport of radionuclides in the repository were found to be slightly smaller than those without their transport after the used nuclear fuels started dissolving after 1,000 years.

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

IRRADIATION TEST OF MOX FUEL IN THE HALDEN REACTOR AND THE ANALYSIS OF MEASURED DATA WITH THE FUEL PERFORMANCE CODE COSMOS

  • WIESENACK WOLFGANG;LEE BYUNG-HO;SOHN DONG-SEONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.317-326
    • /
    • 2005
  • The burning-out of excess plutonium from the reprocessing of spent nuclear fuel and from the dismantlement of nuclear weapons is recently emphasized due to the difficulties in securing the final repository for the spent fuel and the necessity to consume the ex-weapons plutonium. An irradiation test in the Halden reactor was launched by the OECD Halden Reactor Project (HRP) to investigate the in-pile behavior of plutonium-embedded fuel as a form of mixed oxide (MOX) and of inert matrix fuel (IMF). The first cycle of irradiation was successfully accomplished with good integrity of test fuel rods and without any undesirable fault of instrumentations. The test results revealed that the MOX fuel is more stable under irradiation environments than IMF. In addition, MOX fuel shows lower thermal resistance due to its better thermal conductivity than IMF. The on-line measured in-pile performance data of attrition milled MOX fuel are used in the analysis of the in-pile performance of the fuel with the fuel performance code, COSMOS. The COSMOS code has been developed for the analysis of MOX fuel as well as $UO_2$ fuel up to high burnup and showed good capability to analyze the in-reactor behavior of MOX fuel even with different instrumentation.

DEVELOPMENT OF THE ENIGMA FUEL PERFORMANCE CODE FOR WHOLE CORE ANALYSIS AND DRY STORAGE ASSESSMENTS

  • Rossiter, Glyn
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.489-498
    • /
    • 2011
  • UK National Nuclear Laboratory's (NNL's) version of the ENIGMA fuel performance code is described, including details of the development history, the system modelled, the key assumptions, the thermo-mechanical solution scheme, and the various incorporated models. The recent development of ENIGMA in the areas of whole core analysis and dry storage applications is then discussed. With respect to the former, the NEXUS code has been developed by NNL to automate whole core fuel performance modelling for an LWR core, using ENIGMA as the underlying fuel performance engine. NEXUS runs on NNL's GEMSTONE high performance computing cluster and utilises 3-D core power distribution data obtained from the output of Studsvik Scandpower's SIMULATE code. With respect to the latter, ENIGMA has been developed such that it can model the thermo-mechanical behaviour of a given LWR fuel rod during irradiation, pond cooling, drying, and dry storage - this involved: (a) incorporating an out-of-pile clad creep model for irradiated Zircaloy-4; (b) including the ability to simulate annealing out of the clad irradiation damage; (c) writing of additional post-irradiation output; (d) several other minor modifications to allow modelling of post-irradiation conditions.

An analysis of neutron sources and gamma-ray in spent fuels using SCALE-ORIGEN-ARP (SCALE-ORIGEN-ARP를 이용한 사용후핵연료 내 중성자 및 감마선원 분석)

  • So-Hee Cha;Kwang-Heon Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.84-93
    • /
    • 2023
  • The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.

FAST irradiations and initial post irradiation examinations - Part I

  • G. Beausoleil;L. Capriotti;B. Curnutt;R. Fielding;S. Hayes;D. Wachs
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4084-4094
    • /
    • 2022
  • The Advanced Fuels Campaign Fission Accelerated Steady-state Test (FAST) at Idaho National Laboratory (INL) completed its first irradiation cycle within the Advanced Test Reactor (ATR). The test focused on the irradiation of alloy fuel forms for use in sodium fast reactors. The first cycle of FAST testing was completed and four rodlets were removed for the initial post irradiation examination (PIE). The rodlet design and irradiation conditions were evaluated using Monte Carlo N-Particle (MCNP) for as-run power history and COMSOL for temperature analysis. These rodlets include a set of low burnups (~2.5 % fissions per initial metal atoms [%FIMA]), control rodlets, and a helium-bonded annular rodlet (4.7 %FIMA). Nondestructive PIE has been completed and includes visual inspection, neutron radiography and gamma scanning of the FAST capsules and rodlets. Radiography confirmed the integrity of the experiments, revealed that the annulus in the annular fuel was filled at a modest burnup (4.7 %FIMA), and indicated potential slumping of the cooler rodlets at lower burnup. Precision gamma scanning indicated mostly usual fission product behavior, except for cesium in the He-bonded annular fuel. Future destructive PIE will be necessary to fully interpret the effects of accelerated irradiation on U-Zr metallic fuel behavior.