• 제목/요약/키워드: Nuclear Fuel Cycle Analysis

검색결과 361건 처리시간 0.033초

다자간 원자력 협력: 요소와 현안 (Multilateral Nuclear Approaches (MNAs), Factors and Issues Lessons from IAEA Study to Regional Cooperation)

  • Hwang Yong-Soo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.56-66
    • /
    • 2005
  • In response to the increasing emphasis being placed on the importance of international cooperation as part of global efforts to cope with growing non proliferation, and security, concerns in the nuclear field, the Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The mandate of the Expert Group was three fold: ${\bullet}$ To identify and provide an analysis of issues and options relevant to multilateral approaches to the front and back ends of the nuclear fuel cycle; ${\bullet}$ To provide an overview of the policy, legal, security, economic, institutional and technological incentives and disincentives for cooperation in multilateral arrangements for the front and back ends of the nuclear fuel cycle; and ${\bullet}$ To provide a brief review of the historical and current experiences and analyses relating to multilateral fuel cycle arrangements relevant to the work of the Expert Group. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. The Group identifies options for MNAs - options in terms of policy, institutional and legal factors - for those parts of the nuclear fuel cycle of greatest sensitivity from the point of view of proliferation risk. It also reflects the Groups deliberations on the corresponding benefits and disadvantages (pros and cons) of the various options and approaches. Although the Expert Group was able to agree to forward the resulting report to the Director General, it is important to note that the report does not reflect agreement by all of the experts on any of the options, nor a consensus assessment of their respective value. It is intended only to present options for MNAs, and to reflect on the range of considerations which could impact on the desirability and feasibility of those options.

  • PDF

A STATISTICAL APPROACH FOR DERIVING KEY NFC EVALUATION CRITERIA

  • Kim, S.K.;Kang, G.B.;Ko, W.I.;Youn, S.R.;Gao, R.X.
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.81-92
    • /
    • 2014
  • This study suggests 5 evaluation criteria (safety and technology, environmental impact, economic feasibility, social factors, and institutional factors) and 24 evaluation indicators for a NFC (nuclear fuel cycle) derived using factor analysis. To do so, a survey using 1 on 1 interview was given to nuclear energy experts and local residents who live near nuclear power plants. In addition, by conducting a factor analysis, homogeneous evaluation indicators were grouped with the same evaluation criteria, and unnecessary evaluation criteria and evaluation indicators were dropped out. As a result of analyzing the weight of evaluation criteria with the sample of nuclear power experts and the general public, both sides recognized safety as the most important evaluation criterion, and the social factors such as public acceptance appeared to be ranked as more important evaluation criteria by the nuclear energy experts than the general public.

Searching for the viability of using thorium-based accident-tolerant fuel for VVER-1200

  • Mohamed Y.M. Mohsen;Mohamed A.E. Abdel-Rahman;Ahmed Omar;Nassar Alnassar;A. Abdelghafar Galahom
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.167-179
    • /
    • 2024
  • This study explores the feasibility of employing (U, Th)-based accident tolerant fuels (ATFs), specifically (0.8UO2, 0.2ThO2), (0.8UN, 0.2ThN), and (0.8UC, 0.2ThC). The investigation assesses the overall performance of these proposed fuel materials in comparison to the conventional UO2, focusing on deep neutronic and thermal-hydraulic (Th) analyses. Neutronic analysis utilized the MCNPX code, while COMSOL Multiphysics was employed for thermal-hydraulic analysis. The primary objective of this research is to overcome the limitations associated with traditional UO2 fuel by exploring alternative fuel materials that offer advantages in terms of abundance and potential improvements in performance and safety. Given the limited abundance of UO2, long-term sustainable nuclear energy production faces challenges. From a neutronic standpoint, the U-Th based fuels demonstrated remarkable fuel cycle lengths, except (0.8UN, 0.2ThN), which exhibited the minimum fuel cycle length and, consequently, the lowest fuel burn-up. Regarding thermal-hydraulic performance, (0.8UN, 0.2ThN) exhibited outstanding performance with significant margins against fuel melting compared to the other materials. Overall, when considering the integrated performance, the most favourable results were obtained with the use of the (0.8UC, 0.2ThC) fuel configurations. This study contributes valuable insights into the potential benefits of (U, Th)-based ATFs as a promising avenue for enhanced nuclear fuel performance.

Fuel Cycle Analysis of Heavy Water-Moderated Reactor System

  • Paik, In-Kul;Kim, Jin-Soo;Lee, Chang-Kun;Chung, Chang-Hyun;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.15-31
    • /
    • 1977
  • 중수형 원자력발전소의 가동중에 연료를 재장전하는 특성을 고려하여 새로운 핵연료 batch와 주기의 개념을 서정하고, 연속적인 에너지 계산방법으로 개발하여 핵주기비 계산관계식을 유도하였으며, 이러한 관계식들로서 중수형 원자로에 사용될 수 있는 전자계산기 코드 HWRCOST를 개발하였다. 이 코드로서 현재 우리나라에 건설중인 CANDU-PHWR의 전수명에 걸친 핵연료 주기비를 계산하였고 아울러 우라늄 원광비, 성형 가공비, 사용핵연료 보관처리비 및 발전소 가동율의 변화에 대한 핵연료 주기비의 감응도를 분석하였다.

  • PDF

Activation analysis of targets and lead in a lead slowing down spectrometer system

  • Lee, Yongdeok;Kim, Jeong Dong;Ahn, Seong Kyu;Park, Chang Je
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.182-189
    • /
    • 2018
  • A neutron generation system was developed to induce fissile fission in a lead slowing down spectrometer (LSDS) system. The source neutron is one of the key factors for LSDS system work. The LSDS was developed to quantify the isotopic contents of fissile materials in spent nuclear fuel and recycled fuel. The source neutron is produced at a multilayered target by the (e,${\gamma}$)(${\gamma}$,n) reaction and slowed down at the lead medium. Activation analysis of the target materials is necessary to estimate the lifetime, durability, and safety of the target system. The CINDER90 code was used for the activation analysis, and it can involve three-dimensional geometry, position dependent neutron flux, and multigroup cross-section libraries. Several sensitivity calculations for a metal target with different geometries, materials, and coolants were done to achieve a high neutron generation rate and a low activation characteristic. Based on the results of the activation analysis, tantalum was chosen as a target material due to its better activation characteristics, and helium gas was suggested as a coolant. In addition, activation in a lead medium was performed. After a distance of 55 cm from the lead surface to the neutron incidence, the neutron intensity dramatically decreased; this result indicates very low activation.

U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

  • Miller, M.C.;Vega, D.A.
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.803-810
    • /
    • 2013
  • The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

An ultra-long-life small safe fast reactor core concept having heterogeneous driver-blanket fuel assemblies

  • Choi, Kyu Jung;Jo, Yeonguk;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3517-3527
    • /
    • 2021
  • New 80-MW (electric) ultra-long-life sodium cooled fast reactor core having inherent safety characteristics is designed with heterogeneous fuel assemblies comprised of driver and blanket fuel rods. Several options using upper sodium plenum and SSFZ (Special Sodium Flowing Zone) for reducing sodium void reactivity are neutronically analyzed in this core concept in order to improve the inherent safety of the core. The SSFZ allowing the coolant flow from the peripheral fuel assemblies increases the neutron leakage under coolant expansion or voiding. The Monte Carlo calculations were used to design the cores and analyze their physics characteristics with heterogeneous models. The results of the design and analyses show that the final core design option has a small burnup reactivity swing of 618 pcm over ~54 EFPYs cycle length and a very small sodium void worth of ~35pcm at EOC (End of Cycle), which leads to the satisfaction of all the conditions for inherent safety with large margin based on the quasi-static reactivity balance analysis under ATWS (Anticipated Transient Without Scram).

Preliminary Analysis on Decommissioning Strategies for Fukushima Daiichi Nuclear Power Station From Waste Management Perspective

  • Watanabe, Naoko;Yanagihara, Satoshi
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.297-306
    • /
    • 2021
  • In this study, basic strategies for the decommissioning and site remediation of the Fukushima Daiichi Nuclear Power Station (FDNPS) were investigated. Six scenarios were formulated based on two of the three decommissioning strategies of nuclear power plants defined by the International Atomic Energy Agency (IAEA): immediate dismantling and deferred dismantling. A multicriteria decision analysis was performed to analyze the preferences of the options from the viewpoints of the timeframe to complete decommissioning, the resulting waste, the site usability, and the availability of the radioactive waste disposal route. The same six scenarios were applied to both the FDNPS and the nuclear power plants that ceased operation after a normal plant life cycle for comparison. For the FDNPS, the decommissioning project involved fuel debris retrieval, dismantling, and site remediation. The analysis results suggest that the balance between the amount of waste and the time to achieve the end state may be one of the most critical factors to consider when planning the decommissioning and site remediation of the FDNPS.

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.