• 제목/요약/키워드: Nuclear Factor Erythroid 2-Related Factor 2

검색결과 141건 처리시간 0.024초

RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과 (Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • 제21권3호
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase $(AMPK){\alpha}$ and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and $AMPK{\alpha}$ abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or $AMPK{\alpha}/Nrf2$ pathway in HaCaT cells.

생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과 (Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells)

  • 박충무
    • 생명과학회지
    • /
    • 제28권1호
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol은 alfalfa에서 주로 발견되는, 식물계에 많이 분포하고 있는 flavone으로 전통의학에서 소화불량, 천식, 비뇨기계 이상의 치료에 사용되어 왔다. 최근의 연구에서는 항염증 효과가 있는 것으로 밝혀졌으나 항산화 효과에 대한 분석은 없었다. 본 연구에서는 chrysoeriol의 항산화 효과와 그 분자적 기전을 RAW 264.7 cell에서 세포생존율, reactive oxygen species (ROS)와 Western blot분석을 통해 알아보고자 하였다. Chrysoeriol은 lipopolysaccharide(LPS)에 의해 발생한 ROS를 세포독성없이 농도의존적으로 제거하였다. 그리고 항산화효과를 보이는 2상 효소 중 하나인 heme oxygenase (HO)-1의 발현을 강하게 유도하였고, 그와 동시에 전사인자인 Nrf2의 핵내 이동도 촉진하는 것으로 밝혀졌다. 특히, 산화스트레스에 대한 세포내 산화환원항상성 유지에 중요한 역할을 하고 있는 것으로 알려진 mitogen activated protein kinase (MAPK)와 phosphoinositide 3-kinase (PI3K)의 분석결과, chrysoeriol은 extracellular signal regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK)와 p38의 인산화를 통해 HO-1의 발현을 유도하는 것으로 나타났다. HO-1에 의한 항산화 효과를 확인하기 위하여 chrysoeriol을 전처리한 후 t-BHP에 의한 산화 스트레스에 세포를 노출시킨 결과, chrysoeriol 처리에 의해 세포사멸이 줄어드는 것을 확인하였고, HO-1의 유도제와 억제제의 처리에 따라 세포생존율 또한 조절되는 것을 확인할 수 있었다. 따라서, chrysoeriol은 HO-1의 발현을 유도하여 항산화 효과를 높이고 이것은 Nrf2/MAPK 신호전달 체계에 의한다는 것을 알 수 있었다.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.

Prospective Targets for Colon Cancer Prevention: from Basic Research, Epidemiology and Clinical Trial

  • Shingo Miyamoto;Masaru Terasaki;Rikako Ishigamori;Gen Fujii;Michihiro Mutoh
    • Journal of Digestive Cancer Research
    • /
    • 제4권2호
    • /
    • pp.64-76
    • /
    • 2016
  • The step-wise process of colorectal carcinogenesis from aberrant crypt foci, adenoma to adenocarcinoma, is relatively suitable for chemopreventive intervention. Accumulated evidences have revealed that maintaining an undifferentiated state (stemness), inflammation, and oxidative stress play important roles in this colon carcinogenesis process. However, appropriate molecular targets that are applicable to chemopreventive intervention regarding those three factors are still unclear. In this review, we summarized appropriate molecular targets by identification and validation of the prospective targets from a comprehensive overview of data that showed colon cancer preventive effects in clinical trials, epidemiological studies and basic research. We first selected a study that used aspirin, statins and metformin from FDA approved drugs, and epigallocatechin-gallate and curcumin from natural compounds as potential chemopreventive agents against colon cancer because these agents are considered to be promising chemopreventive agents. Experimental and observational data revealed that there are common target molecules in these potential chemopreventive agents: T-cell factor/lymphoid enhancer factor (TCF/LEF), nuclear factor-&B (NF-κB) and nuclear factor-erythroid 2-related factor 2(NRF2). Moreover, these targets, TCF/LEF, NF-κB and NRF2, have been also indicated to suppress maintenance of the undifferentiated state, inflammation and oxidative stress, respectively. In the near future, novel promising candidate agents for colon cancer chemoprevention could be identified by integral evaluation of their effects on these three transcriptional activities.

  • PDF

Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review

  • Lee, M.T.;Lin, W.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권3호
    • /
    • pp.309-319
    • /
    • 2019
  • Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B ($NF-{\kappa}B$) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated $NF-{\kappa}B$ inhibition.

Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways

  • Piao, Mei Jing;Kim, Ki Cheon;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.90-97
    • /
    • 2021
  • Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

창상을 유발한 흰쥐에서 금은화(金銀花) 추출물의 치료 효과 (The Effect of Lonicera japonica Extract in Wound-induced Rats)

  • 원제훈;우창훈
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.47-61
    • /
    • 2020
  • Objectives This study is carried out to investigate the effects of Lonicera japonica in wound-induced rats. Methods Rats were divided into 5 groups; normal (Nor), control (Veh), positive comparison (PC), Lonicera japonica 100 mg/kg (LL), Lonicera japonica 200 mg/kg (LH), each n=8. Total polyphenol and flavonoid were quantified. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3 ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging activation were measured. Reactive oxygen species (ROS) was measured in serum. Antioxidant factors and inflammatory factors were measured in skin tissue, and also hydroxyproline content. Skin tissue was analyzed by Hematoxylin & Eosin and Masson's trichrome staining method. Results Total polyphenol and flavonoid were 32.86±0.14 mg/g and 67.17±0.57 mg/g. The IC50 values of DPPH and ABTS free radical scavenging activation were 26.69±1.50 ㎍/mL and 49.33±4.52 ㎍/mL. ROS was significantly lower in LL and LH groups. Nuclear factor-erythroid 2-related factor 2 (Nrf2) was significantly higher in LH group and higher in LL group but not significant. Superoxide dismutase 1 (SOD-1), catalase, and heme oxygenase 1 (HO-1) were significantly higher in LL and LH groups. Nuclear factor kappa-B p65 (NF-κBp65), phosphorylated iκBα (p-iκBα), cyclooxygenase 2 (COX-2), and tumor necrosis factor alpha (TNF-α) were significantly lower in LL and LH groups. Hydroxyproline was significantly higher in LL and LH groups. The histopathologic analysis showed that skin tissue had recovered further more in LL and LH groups than in Veh group. Conclusions These results suggest that Lonicera japonica has the anti-oxidant, anti-inflammatory and healing effects in wound-induced rats.

Centella asiatica extract prevents visual impairment by promoting the production of rhodopsin in the retina

  • Park, Dae Won;Jeon, Hyelin;So, Rina;Kang, Se Chan
    • Nutrition Research and Practice
    • /
    • 제14권3호
    • /
    • pp.203-217
    • /
    • 2020
  • BACKGROUND/OBJECTIVE: Centella asiatica, also known as Gotu kola, is a tropical medicinal plant native to Madagascar, Southeast Asia, and South Africa. It is well known to have biological activities, including wound healing, anti-inflammatory, antidiabetic, cytotoxic, and antioxidant effects. The purpose of this study was to determine the efficacy of extracts of C. asiatica against age-related eye degeneration and to examine their physiological activities. MATERIALS/METHODS: To determine the effects of CA-HE50 (C. asiatica 50% EtOH extract) on retinal pigment cells, we assessed the cytotoxicity of CoCl2 and oxidized-A2E in ARPE-19 cells and observed the protective effects of CA-HE50 against N-methyl-N-nitrosourea (MNU)-induced retinal damage in C57BL/6 mice. In particular, we measured factors related to apoptosis and anti-oxidation and the protein levels of rhodopsin/opsin. We also measured glucose uptake to characterize glucose metabolism, a major factor in cell protection. RESULTS: Induction of cytotoxicity with CoCl2 and oxidized-A2E inhibited decreases in the viability of ARPE-19 cells when CA-HE50 was administered, and promoted glucose uptake under normal conditions (P < 0.05). In addition, CA-HE50 inhibited degeneration/apoptosis of the retina in the context of MNU-induced toxicity (P < 0.05). In particular, CA-HE50 at 200 mg/kg inhibited the cleavage of pro-caspase-3 and pro-poly (ADP-ribose)-polymerase and maintained the expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 similar to normal control levels. Rhodopsin/opsin expression was maintained at a higher level than in normal controls. CONCLUSION: A series of experiments confirmed that CA-HE50 was effective for inhibiting or preventing age-related eye damage/degeneration. Based on these results, we believe it is worthwhile to develop drugs or functional foods related to age-related eye degeneration using CA-HE50.