• Title/Summary/Keyword: Nrf-2

Search Result 457, Processing Time 0.023 seconds

The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis

  • Christopher J. Occhiuto;Jessica A. Moerland;Ana S. Leal;Kathleen A. Gallo;Karen T. Liby
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.176-186
    • /
    • 2023
  • The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.

Efficacy of Bambusae Caulis in Liquamen to protect intestinal epithelial cells via Nrf2 activation (죽력의 Nrf2 활성화를 통한 장상피세포 보호 효능)

  • Jae Min Kim;Ji Hye Yang
    • Herbal Formula Science
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Objectives : Intestinal epithelial cell damage is closely associated with various intestinal diseases, such as Inflammatory Bowel Disease (IBD), Celiac Disease and Gastroenteritis, and it plays a crucial role in the development and progression of intestinal diseases. Therefore, it is important to develop drugs that target protection of intestinal epithelial cells. Here, we aimed to investigated whether Bambusae Caulis in Liquamen (BCL) against t-BHP induced oxidative stress injury in human intestinal epithelial cells and to explore the underlying molecular mechanism. Methods : In this study, we performed MTT assay, measurement of ROS generation, and immunoblot analysis to determine the cytoprotective efficacy in HT29 cells (human colorectal adenocarinoma cell line with epithelial morphogy). Results : First, we checked that BCL was not cytotoxic up to concentration 30 ㎍/mL in HT29 cells. Then, we confirmed that BCL inhibited t-BHP-induced ROS and cell death. BCL also reversed the expression of proteins associated apoptosis. Next, to confirm the relationship between efficacy of BCL and Nrf2, we conducted experiments using siNrf2. Asresult, the effects of inhibiting ROS production and cell death of BCL was reversed by siNrf2. Conclusion : BCL prevents t-BHP-induced oxidative stress and apoptosis. And the efficacy of BCL is related to Nrf2 activation.

Expression of Nuclear Factor Erythroid 2 Protein in Malignant Cutaneous Tumors

  • Choi, Chang Yong;Kim, Jin Young;Wee, Seo Yeong;Lee, Jang Hyun;Nam, Doo Hyun;Kim, Chul Han;Cho, Moon Kyun;Lee, Yoon Jin;Nam, Hae Seon;Lee, Sang Han;Ch, Sung Woo
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.654-660
    • /
    • 2014
  • Background Reactive oxygen species (ROS) damages cell molecules, and modifies cell signaling. The nuclear factor E2-related factor (Nrf2) is a critical transcription regulator, which protects cells against oxidative damage. Nrf2 expression is increased in a large number of cancers. However, little information has been reported regarding the expression of Nrf2 in skin cancers. Hence, we explored the expression of Nrf2 protein in skin cancers. Methods The Nrf2 protein expression in 24 specimens, including 6 malignant melanomas (MM), 6 squamous cell carcinomas (SCC), 6 basal cell carcinomas (BCC), and 6 normal skin tissues, was evaluated by western blotting. Immunohistochemical staining was performed. The expression of Kelch-like ECH-associated protein 1 (Keap1), the key regulator of Nrf2, was also analyzed by western blotting. Results Small interfering RNA transfection to the melanoma cell line G361 confirmed that an approximately 66 kDa band was the true Nrf2 band. The western blot revealed that the Nrf2 protein was definitely expressed in normal skin tissues, but the Nrf2 expression was decreased in MM, SCC, and BCC. Immunohistochemical examination showed that expression of Nrf2 was decreased in all skin cancer tissues compared to the normal skin tissues. Keap1 was not expressed in all malignant skin tumors and normal skin tissues by western blot. Conclusions ROS was increased in various types of cancers which proteins were highly expressed or underexpressed. This study demonstrated that the expression of Nrf2 protein was down-regulated in human malignant skin tumors. We suggest that decreased expression of Nrf2 is related to skin cancers.

Synergistic inhibition of mesothelioma cell growth by the combination of clofarabine and resveratrol involves Nrf2 downregulation

  • Lee, Yoon-Jin;Im, Jae-Hyuk;Lee, David M.;Park, Ji-Sung;Won, Seong Youn;Cho, Moon-Kyun;Nam, Hae-Seon;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.647-652
    • /
    • 2012
  • We previously reported that MSTO-211H cells have a higher capacity to regulate Nrf2 activation in response to changes in the cellular redox environment. To further characterize its biological significance, the response of Nrf2, a transcription factor that regulates ARE-containing genes, on the synergistic cytotoxic effect of clofarabine and resveratrol was investigated in mesothelioma cells. The combination treatment showed a marked growth-inhibitory effect, which was accompanied by suppression of Nrf2 activation and decreased expression of heme oxygenase-1 (HO-1). While transient overexpression of Nrf2 conferred protection against the cytotoxicity caused by their combination, knockdown of Nrf2 expression using siRNA enhanced their cytotoxic effect. Pretreatment with Ly294002, a PI3K inhibitor, augmented the decrease in HO-1 level by their combination, whereas no obvious changes were observed in Nrf2 levels. Altogether, these results suggest that the synergistic cytotoxic effect of clofarabine and resveratrol was mediated, at least in part, through suppression of Nrf2 signaling.

Identification of the Plant Part of Gleditsia sinensis that Activates Nrf2, an Anti-oxidative Transcription Factor (조협의 부위에 따른 항산화 전사인자 Nrf2 활성 효과)

  • Choi, Jiyeon;Kim, Kyun Ha;Choi, Jun Yong;Han, Chang Woo;Ha, Ki Tae;Jeong, Han-Sol;Joo, Myungsoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.303-309
    • /
    • 2014
  • The fruit of Gleditsia sinensis has been extensively used as a key ingredient of an herbal remedy for the treatment of various inflammatory diseases in traditional Korean Medicine. However, the reason of using the fruit of G. sinensis for the remedy is unclear. Since Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key anti-inflammatory transcription factor, which is activated by the fruit of G. sinesis, we examined whether other plant parts of G. sinensis are also capable of suppressing inflammatory responses by activating Nrf2. Water extracts of various parts of G. sinensis were prepared and tested for Nrf2 activation by reporter assay and western blot analysis. Our results show that the hull of G. sinensis is the most potent in activating Nrf2. Sequential organic solvent extraction of the hull show that all the fractions had a higher potency in activating Nrf2 than the water extract, albeit differential degrees. The hull originated from Korea in general activated Nrf2 strongly compared to that of China. Chloroform fraction of the hull was further examined, showing that the fraction induced nuclear localization of Nrf2, indicative of activated Nrf2, and Nrf2-dependent gene expression including NAD(P)H dehydrogenase quinone 1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and heme oxygenase - 1 (HO-1). Therefore, our results show that, among other plant parts examined in this study, the hull of G. sinensis is the most potent, providing the experimental basis for the use of the hull of G. sinensis as an active ingredient for an anti-inflammatory remedy.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.

Differential Expression and Stability of Endogenous Nuclear Factor E2-related Factor 2 (Nrf2) by Natural Chemopreventive Compounds in HepG2 Human Hepatoma Cells

  • Jeong, Woo-Sik;Keum, Young-Sam;Chen, Chi;Jain, Mohit R.;Shen, Guoxiang;Kim, Jung-Hwan;Li, Wenge;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.167-176
    • /
    • 2005
  • Nuclear factor-E2-related factor 2 (Nrf2) is known as a key regulator of ARE-mediated gene expression and the induction of Phase II detoxifying enzymes and antioxidant enzymes, which is also a common property of many chemopreventive agents. In the present study, we investigated the regulatory role of different chemopreventive agents including sulforaphane (SUL), allyl isothiocyanate (AITC), indole-3-carbinol (I3C), and parthenolide (PTL), in the expression and degradation of Nrf2 and the induction of the antioxidant enzyme HO-1. SUL strongly induced Nrf2 protein expression and ARE-mediated transcription activation, retarded degradation of Nrf2 through inhibiting Keap1, and thereby activating the transcriptional expression of HO-1. AITC was also a potent inducer of Nrf2 protein expression, ARE-reporter gene and HO-1 but had little effect on delaying the degradation of Nrf2 protein. Although PTL and I3C could induce ARE reporter gene expression and Nrf2 to some extent, they were not as potent as SUL and AITC. However, PTL dramatically induced the HO-1 expression, which was comparable to SUL, while I3C had no effect. In addition, when treated with SUL and PTL, inhibition of proteasome by MG132 did not cause additional accumulation of Nrf2, suggesting the involvement of other degradation mechanism(s) in the presence of these compounds such as SUL and PTL. In summary, the results of our current study indicated that different chemopreventive compounds have different regulatory properties on the accumulation and degradation of Nrf2 as well as the induction of cellular antioxidant enzyme HO-1.

Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway (홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과)

  • Kim, Chae-Young;Kang, Bobin;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF effectively inhibited lipid accumulation, with the downregulation of adipogenic factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$). A high dose of SF decreased the protein levels of $PPAR{\gamma}$ and $C/EBP{\alpha}$ by over 90% compared to the control. SF-mediated downregulation of adipogenic factors was due to the regulation of early adipogenic factors including $C/EBP{\beta}$ and $Kr{\ddot{u}}ppel$-like Factor 2 (KLF2). In addition, SF ($200{\mu}g/mg$) decreased intracellular ROS generation by 40% during adipocyte differentiation. However, the SF significantly upregulated Nrf2 and its target proteins, hemoxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Furthermore, SF ($200{\mu}g/mg$) promoted the nuclear translocation of Nrf2. The SF-mediated reduction of lipid accumulation was associated with the regulation of the Nrf2/Keap1 pathway.