• Title/Summary/Keyword: Np(IV)

Search Result 24, Processing Time 0.025 seconds

Sorption of Np(IV) on MX-80 in Ca-Na-Cl Type Reference Water of Crystalline Rock

  • Nagasaki, Shinya
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The pH dependence of sorption distribution coefficient (Kd) of Np(IV) on MX-80 in Ca-Na-Cl type solution with the ionic strength of 0.3 M, which was similar to one of the reference groundwaters in crystalline rock, was experimentally investigated under the reducing conditions. The overall trend of Kd on MX-80 was independent of pH at 5 ≤ pH ≤ 10 but increased as pH increased at pH ≤ 5. The 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the experimentally measured pH dependence of Kd and the optimized surface complexation constants of Np(IV) sorption on MX-80 were estimated. The values of surface complexation constants in this work agreed relatively well with those in the Na-Ca-Cl solution previously evaluated, suggesting that compared to Na+, the competition of Ca2+ with Np(IV) for surface complexation on MX-80 was not much strong in Ca-Na-Cl solution. The sorption model well predicted the pH dependence of Kd values but slightly overestimated the sorption at the low pH region.

DOX-MTX-NPs Augment p53 mRNA Expression in OSCC Model in Rat: Effects of IV and Oral Routes

  • Abbasi, Mehran Mesgari;Khiavi, Monir Moradzadeh;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8377-8382
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Cancer development and progression require inactivation of tumor suppressor genes and activation of proto-oncogenes. The well recognized mechanism of action demonstrated for chemotherapeutic agents is induction of apoptosis via reactivation of p53. In this context, we evaluate the efficacy of IV and oral routes of our novel PH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting p53 profile in an OSCC rat model. Methods: In this study, 120 male rats were divided into 8 groups of 15 animals each. The new formulated DOX-MTX NP and free doxorubicin were IV and orally given to rats with 4-nitroquinoline-1-oxide induced OSCC. Results: Results showed that both DOX and DOX-MTX-NP caused significant increase in mRNA levels of P53 compared to the untreated group (p<0.000). With both DOX and DOX-MTX NP, the IV mode was more effective than the oral (gavage) route (p<0.000). Surprisingly, in oral mode, p53 mRNA was not affected in DOX treated groups (p>0.05), Nonetheless, both IV and oral administration of MTX-DOX NP showed superior activity (~3 fold) over free DOX in reactivation of p53 in OSCC (p<0.000). The effectiveness of oral route in group treated with nanodrug accounts for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Moreover, in treated groups, tumor stage was markedly related to the amount of p53 mRNA (p<0.05). Conclusion: Both oral and IV application of our novel nanodrug possesses superior activity over free DOX-in up-regulation of p53 in a OSCC model and this increase in p53 level associated with less aggressive tumors in our study. Although, impressive results obtained with IV form of nanodrug (-21 fold increase in p53 mRNA level) but both forms of nanodrug are effective in OSCC, with less toxicity normal cells.

A Study on Enhancement of Np Extraction by TBP Through the Electrochemical Adjustment of Np Oxidation State by Using a Glassy Carbon Fiber Column Electrode

  • Kim, Kwang-Wook;Song, Kee-Chan;Lee, Eil-Hee;Park, In-Kyu;Yoo, Jae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.309-315
    • /
    • 2000
  • The changes of Np oxidation state in nitric acid and the effect of nitrous acid on the oxidation state were analyzed by spectrophotometry, solvent extraction, and electrochemical methods. An enhancement of Np extraction to 30 vol.% TBP was carried out through adjustment of Np oxidation state by using a glassy carbon fiber column electrode system. The information of electrolytic behavior of nitric acid was important because the nitrous acid affecting the Np redox reaction was generated during the electrolytic adjustment of the Np oxidation state. The Np solution used in this work consisted of Np(V) and Np(Ⅵ)without (IV). The composition of Np(V) in the range of 0.5M -5.5 M nitric acid was 32% ~ 19%. The electrolytic oxidation of Np(V) to Np(Ⅵ)in the solution enhanced Np extraction efficiency about five times higher than the case without the electrolytic oxidation. It was confirmed that the nitrous acid of less than about 10-5 M acted as a catalyst to accelerate the chemical oxidation reaction of Np(V) to Np(Ⅵ).

  • PDF

Speciation and Solubility of Major Actinides Under the Deep Groundwater Conditions of Korea

  • Dong-Kwon Keum;Min-Hoon Baik;Pil-Soo Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.517-531
    • /
    • 2002
  • The speciation and solubility of Am, Np, Pu and U have been analyzed by means of the geochemical code MUGREM, under the chemical conditions of domestic deep groundwater, in order to support the preliminary safety assessment for a Korean HLW disposal concept. Under the conditions of groundwaters studied, the stable solid phase is AmOHC $O_3$(s) or Am(OH)$_3$(s), soddyite((U $O_2$)$_2$ $SiO_2$.2$H_2O$) or N $a_2$ $U_2$ $O_{7}$ (c), Np(OH)$_4$(am), and Pu(OH)$_4$(am) for Am, U, Np, and Pu, respectively. The dominating aqueous species are as follows: the complexes of Am(III), Am(OH)$_2$$^{+}$ and Am(C $O_3$)$_2$$^{[-10]}$ , the complexes of U(VI), U $O_2$(OH)$_3$$^{[-10]}$ and U $O_2$(C $O_3$)$_3$$^{4-}$, the complexes of Np(IV), Np(OH)$_4$(aq) and Np(OH)$_3$C $O_3$, and the complexes of Pu(IV), Pu(OH)$_4$(aq) and Pu(OH)$_3$C $O_3$$^{[-10]}$ . The calculated solubilities exist between 1.9E-10 and 1.3E-9 mol/L for Am, between 5.6E-6 and 1.2E-4 mol/L for U, between 3.1E-9 and 1.3E-8 mol/L for Np, and between 6.6E-10 and 2.4E-10 mol/L for Pu, depending on groundwater conditions. The present solubilities of each actinide agree well with the results of other studies obtained under similar conditions.s.

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Novel DOX-MTX Nanoparticles Improve Oral SCC Clinical Outcome by Down Regulation of Lymph Dissemination Factor VEGF-C Expression in vivo: Oral and IV Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6227-6232
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. The aim of present study was to evaluate the efficacy of novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in terms of their potential to change the VEGF-C expression profile in a rat OSCC model. Materials and Methods: 120 male rats were divided into 8 groups of 15 animals administrated with 4-nitroquinoline-1-oxide to induce OSCCs. Newly formulated doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) and free doxorubicin were IV and orally administered. Results: Results indicated that both oral and IV forms of DOX-MTX-nanoparticle complexes caused significant decrease in the mRNA level of VEGF-C compared to untreated cancerous rats (p<0.05). Surprisingly, the VEGF-C mRNA was not affected by free DOX in both IV and oral modalities (p>0.05). Furthermore, in DOX-MTX NP treated group, less tumors characterized with advanced stage and VEGF-C mRNA level paralleled with improved clinical outcome (p<0.05). In addition, compared to untreated healthy rats, the VEGF-C expression was not affected in healthy groups that were treated with IV and oral dosages of nanodrug (p>0.05). Conclusions: VEGF-C is one of the main prognosticators for lymph node metastasis in OSCC. Down-regulation of this lymph-angiogenesis promoting factor is a new feature acquired in group treated with dual action DOX-MTX-NPs. Beside the synergic apoptotic properties of concomitant use of DOX and MTX on OSCC, DOX-MTX NPs possessed anti-angiogenesis properties which was related to the improved clinical outcome in treated rats. Taking together, we conclude that our multifunctional doxorubicin-methotrexate complex exerts specific potent apoptotic and anti-angiogenesis properties that could ameliorate the clinical outcome presumably via down-regulating dissemination factor-VEGF-C expression in a rat OSCC model.

Preparation of TiO2 Nanowires/Nanoparticles Composite Photoanodes for Dye-sensitized Solar Cells

  • Heo, Sung Yeon;Chi, Won Seok;Kim, Jin Kyu;Lee, Chang Soo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.82-84
    • /
    • 2013
  • We fabricated dye-sensitized solar cells (DSSCs) with $TiO_2$ nanowire (NW)/nanoparticle (NP) composite and solidified nanogel as the photoelectrode and electrolyte, respectively. $TiO_2$ NWs were generated via pore-infiltration of titanium (IV) isopropoxide (TTIP) into a track-etched polycarbonate membrane with a pore diameter of 100 nm, followed by calcination at $500^{\circ}C$. Energy conversion efficiency of $TiO_2$ NW/NP-based DSSCs was always higher than that of NP-based cells. We attributed this to improved light scattering and electron transport by $TiO_2$ NWs, as verified by intensity modulation photocurrent spectroscopy (IMPS) and intensity modulation photovoltage spectroscopy (IMVS) analyses. Quasi-solid-state DSSCs with NW/NP composites exhibited 5.0% efficiency at 100 $mW/cm^2$, which was much greater than that of NP-based cells (3.2%).

New formulated "DOX-MTX-loaded Nanoparticles" Down-regulate HER2 Gene Expression and Improve the Clinical Outcome in OSCCs Model in Rat: the Effect of IV and Oral Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9355-9360
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. In this study, we evaluate the efficacy of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting HER2 expression profile in OSCC model in rat. Results: DOX-MTX- nanoparticle complexes caused significant decrease in mRNA level of HER2 compared to untreated cancers (p<0.05) and this finding was more pronounced with the IV mode (p<0.000). Surprisingly, HER2 mRNA was not affected in DOX treated as compared to the control group (p>0.05). On the other hand, in the DOX-MTX NP treated group, fewer tumors characterized with advanced stage and decreased HER2 paralleled improved clinical outcome (P<0.05). Moreover, the effectiveness of the oral route in the group treated with nanodrug accounted for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Furthermore, there was no significant difference in mRNA level of HER2 (p>0.05). Conclusions: Influence of HER2 gene expression is a new feature and mechanism of action observed only in dual action DOX-MTX-NPs treated groups. Down-regulation of HER2 mRNA as a promising marker and prognosticator of OSCC adds to the cytotoxic benefits of DOX in its new formulation. Both oral and IV application of this nanodrug could be used, with no preferences in term of their safety or toxicity. As HER2 is expressed abundantly by a wide spectrum of tumors, i DOX-MTX NPs may be useful for a wide-spectrum of lesions. However, molecular mechanisms underlying HER2 down regulation induced by DOX-MTX NPs remain to be addressed.