Browse > Article

Speciation and Solubility of Major Actinides Under the Deep Groundwater Conditions of Korea  

Dong-Kwon Keum (Korea Atomic Energy Research Institute)
Min-Hoon Baik (Korea Atomic Energy Research Institute)
Pil-Soo Hahn (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.34, no.5, 2002 , pp. 517-531 More about this Journal
Abstract
The speciation and solubility of Am, Np, Pu and U have been analyzed by means of the geochemical code MUGREM, under the chemical conditions of domestic deep groundwater, in order to support the preliminary safety assessment for a Korean HLW disposal concept. Under the conditions of groundwaters studied, the stable solid phase is AmOHC $O_3$(s) or Am(OH)$_3$(s), soddyite((U $O_2$)$_2$ $SiO_2$.2$H_2O$) or N $a_2$ $U_2$ $O_{7}$ (c), Np(OH)$_4$(am), and Pu(OH)$_4$(am) for Am, U, Np, and Pu, respectively. The dominating aqueous species are as follows: the complexes of Am(III), Am(OH)$_2$$^{+}$ and Am(C $O_3$)$_2$$^{[-10]}$ , the complexes of U(VI), U $O_2$(OH)$_3$$^{[-10]}$ and U $O_2$(C $O_3$)$_3$$^{4-}$, the complexes of Np(IV), Np(OH)$_4$(aq) and Np(OH)$_3$C $O_3$, and the complexes of Pu(IV), Pu(OH)$_4$(aq) and Pu(OH)$_3$C $O_3$$^{[-10]}$ . The calculated solubilities exist between 1.9E-10 and 1.3E-9 mol/L for Am, between 5.6E-6 and 1.2E-4 mol/L for U, between 3.1E-9 and 1.3E-8 mol/L for Np, and between 6.6E-10 and 2.4E-10 mol/L for Pu, depending on groundwater conditions. The present solubilities of each actinide agree well with the results of other studies obtained under similar conditions.s.
Keywords
speciation; solubility; pH; Eh; carbonate; actinide; Am; Pu; Np; Pu;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fuger, J., I.L. Khodakovsky, E.I. Sergeyeva, V.A. Medvedev and J.D. Narvratil, The Chemical Thermodynamics of Actinide Elements and Compounds, Part 12;The Actinide Aqueous Inorganic Complexes, IAEA, Vienna, Austria, (1992)
2 OECD/NEA, Geological disposal of Radioactive Waste: An overview of the Current States of Understanding and Development, OECD/NEA, p.111, (1984)
3 Dormuth, K.W., 'Assessment of the Canadian Nuclear Fuel Disposal Concept,' Proceeding of Symposium on safety Assessment of Radioactive Waste Repositories, OECD/NEA, 211 (1993)
4 Golder Associates, Performance Evaluations Related to Area Characterization of Crystalline Rock, Golder Associates, Office Crystalline Repository Division, OH, BMI/OCRD-27, (1988)
5 Frlmy, A.R., D. Girvin, and E. A. Jenne, MINTEQ: A Computer Program for Calculating Aqueos Geochemical Equilibria, U.S. Environmental Protection Agency, by Battelle, Pacific Northwest laboratories, Richland, Washington, EPA-600/3-84-032, (1984)
6 Silva, R.J., G. Bidoglio, M.H. Rand, P.B. Robouch, H. Wanner, and I. Puigdomenech, Chemical Thermodynamics Series 2: Chemical Thermodynamics of Americium: NEA-TDB, OECD, p.374, North-Hollland Elsevier Science Publishers, (1995)
7 Nagra, Project Gewahr 1985, Nagra, Baden, Project Report, NGB 85-09, (1985)
8 TVO, Final Disposal of Spent Nuclear Fuel in Finnish Bedrock, YJT, Helsinki, Tech. Report YJT-92-31E, (1992)
9 PNC, Research and Development on Geological Waste: Final Progress Report, PNC, Tokyo, Tech. Report, TN1410 93-018, (1992)
10 SKB, SKB-91; Final Disposal of Spent Nuclear Fuel-Importance of the Bedrock for Safety, SKB, Stockholm, Tech. Report, TR 92-20, (1992)
11 Keum, D.K., M.H. Baik and P.S. Hahn, Thermodynamic data of Am, Th, U, Np and Pu and their application for HLW disposal, KAERI, Technical report, KAERI/TR-2046/02, (2002)
12 Grenthe, I., J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C.N. Gregu, and H. Wanner, Chemical Thermodynamics Series 1: Chemical Thermodynamics of Uranium: NEA-TDB, OECD, p.715, North Holland Elsevier Science Publishers, (1992)
13 Dpeiaz, A.P. and B. Grambows, 'Soild-Liquid phase Equilibria of U(VI) in NaCl Brines,' Geochim. Cosmochim Acta, 62, 236(1998)   DOI   ScienceOn
14 SKI, SKI Project 90 Summary, SKI, Stockholm, Tech. Report 91-23, (1991)
15 Bond, K.A., T.G. Heath, and C.J. Tweed, HATCHES: A Reference Thermodynamic Database for Chemical Equilibrium Studies, Nirex, Switzerland, Report NSS/R379, December (1997)
16 Keum, D.K. and P.S. Hahn, 'Application and Development of a Multi-geochemical Reaction Equilibrium Model (MUGREM),' Environ. Eng. Res., 4, 113(1999)
17 Takeda, S., S. Shima and H. Kimura, The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the EQ3/6, JAERI research 95-069, (1995)
18 Wolery, T.J., Calculation of Chemical Equilibrium between Aqueous Solutions and Minerals: The EQ3/6 Software package, Lowrence Livermore National Lab., Livermore, CA, UCRL-52658, (1992)
19 Grambow, B., A. Loida, A. Martinez-Esparza, P. Diaz-Arocas, J. de Pablo, J.L. Paul, G. Marx, J.P. Glatz, K. Lemmens, K. Ollola, and H. Christensen, Long-term Safety of Radioactive Waste Disposal: Source Term for Performance Assessment of Spent Fuel as a Waste Form, Final Report, Forschungszentrum Karlsruhe, Germany, FZKA 6420, (2000)
20 Neck, V., W. Runde, J.I. Kim and B. Kanellakipulos, 'Solid-Liquid Equilibrium Reactions of Neptunium(V) in Carbonate Solution at Different Ionic strength,' Radiochimica Acta, 65, 29(1994)
21 Fanghanel, Th., V. Neck and J.I. Kim, 'Thermodynamics of Neptunium(V) in Concentrated Salt Solutions: II.Ion Interaction (Pitzer) parameters for Np(V) Hydrolysis Species and Carbonate Complexes,' Radiochimica Acta, 69, 169(1995)
22 Sandino, A., and B. Grambow, 'Solubility Equilibria in U(VI)-Ca-K-Cl-$H_2O$ Systems: Transformation of Schoepite into Becquerelite and Compreignacite,' Radiochmica Acta, 66/67, 37(1994)
23 Lemire, R.J., J. Fuger, H. Nitsche, P. Potter, M.H. Rand, J. Rydberg, K. Spahin, J. C. Sullivanl, W.J. Ullman, P. Vitorge, and H. Wanner, Chemical Thermodynamics Series 4: Chemical Thermodynamics of Neptunium and Plutonium: NEA-TDB, OECD, p.845, North-Holland Elsevier Science Publishers, (2001)
24 Pearson, F.J. and H.N. Waber, NAGRA/PSI Thermodynamic Data Base: Preparation of a Version for PHREEQC, NAGRA, Switzerland, TM-44-99-01, (1999)
25 Neck, V. and J.I. Kim, 'Thermodynamics of Tetravalent Actinides: A Critical Assessment of Uncertainties,' Prodeeding of Actinides Conferences 2001, Hajuyama, Japan, (2001)
26 Neck, V. and J.I. Kim, 'Solubility and Hydrolysis of Tetravalent Actinides,' Radiochimica Acta, 89, 1(2001)   DOI   ScienceOn
27 Neck, V. and J.I. Kim, 'An Electrostatic Approach for the prediction of actinide Complexation Constants with Inorganic Ligands-Application to Carbonate Complexes,' Radiochimica Acta, 88, 815(2000)   DOI   ScienceOn
28 Neck, V., Th. Fanghanel, and J.I. Kim, Aquatische Chemie und Thermodynamische Modellierung von Trivalenten Actiniden, Forschungszentrum Karlsruhe, Germany, FZKA 6110, (1998)
29 Neck, V. and V. Metz, Kenntnisstand zur Aquatischen Chemie und Thermodynamik von Hexavalenten Actiniden, Forschungszentrum, Karlsruhe, Germany, FZK/INE 010/00 (internal report, unpublished),(2001)
30 Moll, H., G. Geipel, W. Metz, G. Bernhard, and H. Nitsche, 'Solubility and Speciation of $(UO_2)_2SiO_42H_2O$ in Aqueous Systems,' Radiochimica Acta, 74, 3(1996)