• 제목/요약/키워드: Nozzle velocity ratio

검색결과 148건 처리시간 0.024초

다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet)

  • 김상근;하만영;손창민
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

An Analytical Study on the Gas-Solid Two Phase Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향 (Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow)

  • 조우진;이인철;이봉수;구자예
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.16-22
    • /
    • 2008
  • 액체제트의 액적분열 분포특성을 알아보기 위해 아음속 유동 내로 수직 분사된 이유체 분무를 실험적으로 연구하였다. 노즐은 L/d=3의 외부혼합형을 사용하였으며 공기와 액체의 비를 $0\;{\sim}\;59.4%$까지 변화시키면서 분사하였다. 분무형상을 이미지화 하여 분무의 궤적과 분열특성을 관찰하였다. PDPA를 사용하여 액체제트 분열의 단면분포 특성을 측정하였으며 SMD, 액적속도, 그리고 체적유속을 측정하였다 이유체 분무로부터 공급되는 공기의 유량이 증가할수록 액체 제트의 충돌점은 노즐 입구와 좀 더 가까워졌으며, 침투거리는 증가하였고, 기체 액체 비를 증가시킴에 따라 좀 더 무화된 액체제트의 분포를 얻을 수 있었다.

배관 재질 손상에 미치는 액적충돌침식의 영향에 대한 연구 (A Study for the Effect of Liquid Droplet Impingement Erosion on the Loss of Pipe Flow Materials)

  • 김경훈;조연수;김형준
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.9-15
    • /
    • 2013
  • Wall thinning of pipeline in power plants occurs mainly by flow acceleration corrosion (FAC), cavitation erosion (C/E), liquid droplet impingement erosion (LDIE). Wall thinning by FAC and C/E has been well investigated; however, LDIE in plant industries has rarely been studied due to the experimental difficulty of setting up a long injection of highly-pressurized air. In this study, we designed a long-term experimental system for LDIE and investigate the behavior of LDIE for three kinds of materials (A106B, SS400, A6061). The main control parameter was the air-water ratio (${\alpha}$), which was defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). In order to clearly understand LDIE, the spraying velocity (${\nu}$) of liquid droplets was controled larger then 160 m/s and the experiments were performed for 15 days. Therefore, this research focuses relation between erosion rate and air-water ratio on the various pipe-flow materials. NPP(nuclear power plant)'s LDIE prediction theory and management technique were drawn from the obtained data.

난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동 (Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor)

  • 김대식
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향 (Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF

산화제 과잉 예연소기 인젝터의 분무 특성에 관한 연구 (An Experimental Study of the Spray Characteristics for an Oxidizer-rich Preburner Injector)

  • 소윤석;양준호;한영민;최성만
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.58-64
    • /
    • 2007
  • The spray characteristics of the oxidizer-rich preburner are investigated. This system is generally operated at an oxidizerfuel mixture ratio of 50. The spray quality and mixing performance are very important for safe combustion. To know the spray characteristics of the oxidizer-rich preburner, we have designed various swirl injectors and measured droplet velocity and size by the PDPA system. The flow discharge coefficient of the fuel orifice is $0.12{\sim}0.21$, oxidizer orifice discharge coefficient is $0.16{\sim}0.28$. From the spray visualization, fuel nozzle spray angle is $15^{\circ}{\sim}25^{\circ}$, oxidizer nozzle spray angle is $65^{\circ}{\sim}85^{\circ}$ and combined spray angle is reduced $2^{\circ}{\sim}5^{\circ}$ compared to the oxidizer nozzle only case. From the PDPA measurement, droplet SMD is $175\;{\mu}m$ at 50 mm and $190\;{\mu}m$ at 100 mm of variant 1 combined case. The number concentration measurement revealed the reason of the droplet diameter increasement with distance. That is due to drop coalescence results from collision of drops which is occurred in dense sprays at a long distance from nozzle orifice exit.

  • PDF

공기액체질량비에 따른 이류체 선회형 분사의 분무거동 및 미립화 특성 (Feature of Spray Transport and Atomization from Two-Phase Swirling Jet with Air-to-Liquid Mass Ratio)

  • Lee, Sam-Goo
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2004
  • 선회형 미립화기의 분무거동에 관한 논의는 현재 여러 연구자들에 의해 활발히 논의되고 있다. 본 연구에서는 이류체 내부혼합형 선회노즐의 특성을 파악하고자 공기와 액체의 질량 비를 바꿔가며 최적의 미립화 조건을 알아보기 위하여 실시되었다. 이를 위하여 분무 유동장의 평균속도, 파동속도 및 액적크기에 관한 비교를 정량적으로 분석하였다. 각 유동조건에 따른 지수함수를 만족하는 상관관계 또한 도출하였는데, 이는 질량 비에 관계없이 거의 동일함을 알 수 있었고, 질량비가 높을수록 선회 각이 30o인 경우가 미립화 특성이 가장 우수하였다. 따라서, 본 연구에서 이루어진 결과에서는 노즐의 형상이 분무유동에 미치는 여러 인자 중 가장 중요한 것이라 여겨진다.

75톤급 액체로켓 엔진 터보펌프 터빈의 성능특성연구 (Investigation on the Performance Characteristics of the 75ton Class Turbopump Turbine)

  • 정은환;이항기;박편구;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.38-44
    • /
    • 2010
  • 75톤급 개방형 액체로켓용 터보펌프 터빈의 성능시험을 수행하였다. 넓은 압력비와 회전수 영역에서 터빈의 출력을 측정하였으며 이를 통해 터빈로터 전후의 유동특성을 파악하였다. 이와 함께 터빈의 효율 변화 및 측정된 로터입구의 압력을 기 개발된 30톤급 터빈과 비교하여 설계 의도에 부합되는 향상된 성능의 동익을 재설계하였다.

  • PDF