• Title/Summary/Keyword: Nozzle velocity ratio

Search Result 147, Processing Time 0.034 seconds

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

Experimental Investigation on the Flow Characteristics of High Pressurized Jet with Nozzle Aspect Ratio (노즐 형상비에 따른 고압분사의 유동 특성에 관한 실험적 연구)

  • Lee, Sang-Jin;Namkung, Jung-Hwan;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2031-2036
    • /
    • 2003
  • High-pressurized jet is widely using in industrial works. however, few papers studied on the performances or characteristics on that kind of nozzles. And in this study, some flow characteristics with the variation of nozzle aspect ratios such as mean velocity distributions, momentum variations along the center line have been experimentally investigated. As the results, some semi-empirical correlations of profiles of pressure and mean velocity distributions, momentum conservations with the nozzle aspect ratios are formulated. It is expected that these empirical formula can be applied for the random estimations of nozzle performances.

  • PDF

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

A Numerical Analysis of Flow Field in the Silt Nozzle During Cold Spray Coating Process (저온분사 코팅공정에서 초음속 슬릿노즐 사용시 유동장 해석)

  • Park, Hye-Young;Park, Jong-In;Jung, Hun-Je;Jang, Kyoung-Soo;Baek, Ui-Hyun;Han, Jeong-Whan;Kim, Hyung-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The cold spray process is an emerging technology that utilizes high velocity metallic particles for surface coating. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The cold spray process normally uses a circular nozzle that has a rather narrow spraying range. To overcome this fault, a slit nozzle was considered in this study. The slit nozzle is anticipated to reduce the coating process time because it has a wider coating width than the circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas and particle velocity as the circular nozzle. To improve the coating efficiency of a slit nozzle, the shape of the slit nozzle was modified. And the results of gas flow and particle behaviour according to the nozzlers shape were compared by the a numerical analysis. As a results, as Expansion Ratio(ER) of 7.5 was found to be the most optimal condition for enhancing the spraying efficiency when the ER was changed by the variation of nozzle neck and exit size.

The Effect of Aspect Ratio on the Flow Characteristics of Elliptic Jets (종횡비에 따른 타원제트의 유동특성에 관한 실험적 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1156-1162
    • /
    • 1992
  • The effect of aspect ratio on the flow characteristics of elliptic jets was experimentally investigated. The flow characteristics of sharp-edged elliptic nozzles with aspect ratio of 1 (round nozzle), 2 and 4 were measured by using a 3-D LDV system along the major and minor axis at X/De = 2, 3, 5, 7 and along the centerline up to X/De = 14. At each measurement point mean velocites, turbulent intensities, skewness of three orthogonal velocity components, and Reynolds shear stress were obtained. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4 * 10$^{4}$. Difference in the spreading rate along the major and minor axis was remarkable. The jet half width along the major axis decreased at first and then increased again with going downstream. But the jet width along the minor axis increased steadly. The elliptic jet of AR = 2 had two switching points within the measurement range, while that of AR = 4 had only one. (AAA) : The elliptic jet of AR = 2 showed larger velocity decay rate than that of AR = 1 and AR = 4. The effect of aspect ratio on the flow characteristics of elliptic jets was dominant in the near jet regions of X/De < 7, and the skewness and Reynolds shear stress had quite different distribution depending on the aspect ratio of the elliptic nozzle.

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

Nozzle Configurations for Partially Premixed Interacting Jet Flame to Enhance Blowout Limits (화염의 상호작용에 의한 부분 예혼합화염의 화염날림 유속 확대)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.71-79
    • /
    • 2005
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of $40{\sim}72$ times the diameter of single jet, the flames are not extinguished even in 200m/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying S and ${\phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle (U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향)

  • Kim, H.G.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

Effect of Internal Swirler Angle and Swirl Chamber Aspect Ratio of Nozzle on Spray Characteristics (노즐 내부 스월러각과 스월실 형상비 변화가 분무특성에 미치는 영향)

  • Kim, Y.J.;Jung, H.C.;Jung, J.W.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • The Objective of this study is to investigate the effect of internal swiller angle and swirl chamber aspect ratio of nozzle on spray characteristics for application of spray system in micro fabrication process. The macro-spray characterictics such as the spray angle and breakup process were obtained by photographs illustrating atomization. The micro-spray characteristics such as droplet size and axial velocity were measured by using PDA with swirler angle and swirl chamber aspect ratio. The swiller angles were $13.5^{\circ},\;27^{\circ},\;and\;40.5^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6, and 2.0. It was found that the smaller swirl chamber aspect ratio was, the larger axial velocity and drop size were.

  • PDF